Skip to main content
Log in

Gravity theory allowing for point particles and zitterbewegung

Теория гравитации, учитывающая точечные частицы и «дрожательное» движение

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

A gravitational theory is formulated in the field-theoretic approach, by starting from the flat unrenormalized space-time. The particle proper massesm (0)(n) are allowed to depend on the gravitational (tensor) potential. The resulting theory leads to equations formally equal to Einstein's equations if the observable, renormalized space is a Finslerian one. Ifm (0)(n) =constant, general relativity (in the Riemannian space) is obtained as a particular case. However, in order to fit the usual relativistic dependence of the mass on the speed, we must conceive the particles as all having a «zitterbewegung» with the speed of light. The observable motion is the drift of such microscopic flickering which is independently assumed in the stochastic interpretation of quantum electrodynamics. The observable massm *γm (0) is finite even with a «zitterbewegung» with light speed ifm (0)→0. Gravity does not effect the massm * corresponding to the observable drift motion. This macroscopically leads to a Jordan-Brans-Dicke type of theory with a very small scalar component so that it is almost equal to Einstein's theory. Differently from Einstein's theory, the atoms can have bound states even with point particles in the new theory, which is also partially Machian.

Riassunto

Si formula una teoria gravitazionale nell'approccio di teoria dei campi a partire dallo spazio-tempo piatto non rinormalizzato. Si suppone che le masse proprie delle particellem 0n possano dipendere dal potenziale gravitazionale (tensoriale). La teoria che si ottiene porta ad equazioni formalmente uguali a quelle di Einstein, ma ambientate in uno spazio (rinormalizzato) di Finsler. Ponendom 0n =costante, si ottiene come caso particolare la relatività generale (nello spazio di Riemann). Tuttavia, per rispettare la ben nota dipendenza della massa dalla velocità, si deve pensare che le particelle abbiano tutte uno «zitterbewegung» con la velocità della luce. Il moto che si osserva è quello di deriva di tale sfarfallamento microscopico che viene postulato in maniera indipendente nella interpretazione stocastica della elettrodinamica quantistica. La massa osservabilem *m (0) risulta finita anche con uno «zitterbewegung» con la velocità della luce purchém (0)→0. La gravità non influenza la massam * che corrisponde al moto osservabile di deriva. Tutto ciò porta ad una teoria del tipo di quelle di Jordan-Brans-Dicke con una componente scalare molto piccola e perciò la teoria è quasi uguale a quella di Einstein. A differenza che nella teoria di Einstein, in questa gli atomi possono avere stati legati anche con particelle puntiformi, e la teoria è inoltre parzialmente Machiana.

Резюме

Исходя из плоского неперенормируемого пространства и времени, формулируется теория гравитации. Допускается, что собственные массы частицm (0)(n) зависят от гравитационного (тензорного) потенциала. Предложенная теория приводит к уравнениям, формально равным уравнениям Эйнштейна, если наблюдаемое перенормируемое пространство представляет пространство Финслера. Еслиm (0)(n) =const, то как частный случай получается общая теория относительности (в Римановом пространстве). Однако, чтобы подогнать обычную релятивистскую зависимость массы от скорости, мы должны предположить, что частицы совершают «дрожательное» движение со скоростью света. Наблюдаемое движение представляет дрейф такого микроскопического дрожания, который предполагается в стохастической интерпретации квантовой электродинамики. Наблюдаемая массаm *m (0) является конечной даже в случае «дрожательного» движения со скоростью света, еслиm (0)→0. Гравитация не влияет на массуm *, соответсвующую наблюдаемому дрейфовому движению, таким образом, макроскопически получается теория Эйнштейна, но микроскопически учитывается «дрожание». В отличии от теории Эйнштейна, атомы могут иметь связанные состояния даже в случае точечных частиц в новой теории, которая является частично Маховской.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Thirring:Ann. of Phys.,16, 96 (1961). See alsoR. U. Sexl:Fortschr. Phys.,15, 269 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S. Deser:Gen. Relativ. Gravit.,1, 9 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Cavalleri andG. Spinelli:Phys. Rev. D,12, 2203 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  4. See, for example,G. Cavalleri andG. Spinelli:Phys. Rev. D,12, 2200 (1975), where the electromagnetic field is also included.

    Article  MathSciNet  ADS  Google Scholar 

  5. The integration over a volume containing the test particle is very useful for eliminating the Dirac delta functions which appear in (2) and (4) because of the pointlike character assumed for the particles. In this case the volume integration of components in general co-ordinates does not constitute a problem because of the delta functions. If the delta functions were not present (e.g. a continuum), we would not have to integrate.

  6. R. Feynman:Chapel Hill Conference (1957);L. Halpern:Ann. of Phys.,25, 387 (1963);W. Wiss:Helv. Phys. Acta,38, 469 (1965);V. Ogietsky andV. I. Polubarinov:Ann. of Phys.,35, 167 (1965);D. G. Boulware andS. Deser:Ann. of Phys.,89, 193 (1975).

  7. The Dicke framework is here accepted by requiring that the field equations and the equations of motion are obtainable by a Lagrangian formulation. SeeR. H. Dicke:The Theoretical Significance of Experimental Relativity (New York, N. Y., 1964).

  8. G. Cavalleri andG. Spinelli:Nuovo Cimento,39 B, 87 (1977). Notice that we cannot integrate (12) and then substitute the results in the Lagrangian because of the integration constant.

    Article  ADS  Google Scholar 

  9. H. Rund:The Differential Geometry of Finsler Spaces (Berlin, 1959).

  10. Y. Takano:Lett. Nuovo Cimento,10, 747 (1974).

    Article  MathSciNet  Google Scholar 

  11. See, for example,L. Bess:Prog. Theor. Phys.,49, 1889 (1973);L. De La Pena Auerbach:Journ. Math. and Phys.,12, 453 (1971);T. H. Boyer:Phys. Rev. D,11, 790, 809 (1975);G. Cavalleri: to be published.

    Article  ADS  Google Scholar 

  12. The same happens for a neutral particle which may be thought of as consisting of a pair of opposite elementary charges not exactly superimposed. Furthermore, as shown in sect.4 E, 1 ofT. H. Boyer:Phys. Rev. D,11, 790 (1975), we can also conceive of a neutral particle as the limit of a charged particle when its chargee vanishes. Both the rate of energy absorption from the zero-point radiation and the rate of energy emission vanish ase→0, but the ratio between the two, which determines the characteristics of the Brownian motion, is constant independently of the magnitude ofe.

    Article  ADS  Google Scholar 

  13. The Schrödinger solution of the Dirac equations, which implies a «zitterbewegung» with the light speed, has never been taken in a realistic sense because, with a finite rest mass, the mass at light speed would be infinite. Only in the stochastic interpretation of quantum electrodynamics can this universal random motion be conceived even at light speed, providedm (0)=0. A charged-particle speed almost equal to light speed has recently been claimed byO. Theimer andP. R. Peterson:Lett. Nuovo Cimento,13, 279 (1975) by considering as real the runway solutions of the Lorentz-Abraham-Dirac equations. The runway is not in one direction because of the random actions due to the zero-point radiation.

    Article  Google Scholar 

  14. The electron is considered by all physicists as an elementary particle. This would imply, as emphasized for example byL. D. Landau andE. M. Lifshitz (The Classical Theory of Fields, subsect.2'1 (London, 1959)), that the electron is a geometrical point. See also the relevant works quoted byPeres in ref. (16).J. Callaway:Phys. Rev., 0112, 290 (1958);A. Peres:Phys. Rev.,120, 1044 (1960);Journ. Math. Phys.,5, 720 (1964);E. Nowotny:Comm. Math. Phys.,26, 321 (1972). Furthermore, giving a radius to the electron is, at present, an unnecessary introduction of a new universal constant. High-energy experiments also suggest a pointlike character for the electron, since its radius, if any, must be lower than 1% of the Lorentz radius: see,S. J. Brodsky andS. D. Drell:Annual Review of Nuclear Sicence, edited byE. Segre, J. R. Grover andH. P. Noyes (Palo Alto, Cal., 1970).

    Google Scholar 

  15. J. Callaway:Phys. Rev., 0112, 290 (1958);A. Peres:Phys. Rev.,120, 1044 (1960);Journ. Math. Phys.,5, 720 (1964);E. Nowotny:Comm. Math. Phys.,26, 321 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Eddington:The Mathematical Theory of Relativity, second edition, sect.62 (Cambridge, Mass., and New York, N. Y., 1954);G. V. Bicknell:J. Phys. A,7, 1061 (1974); see also the recent proposal byC. N. Yang:Phys. Rev. Lett.,33, 445 (1974), followed by many comments; the latest, containing the relevant bibliography, is byM. Camenzind:Phys. Rev. Lett.,35, 1188 (1975). All these theories are rather in-natural if we rely on the flat-space approach.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalleri, G., Spinelli, G. Gravity theory allowing for point particles and zitterbewegung. Nuovo Cim B 39, 93–104 (1977). https://doi.org/10.1007/BF02738179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738179

Navigation