Skip to main content
Log in

A proposal for the calculation of the vibrational states of small molecules whereL=0,P=+

Предложение для вычисления вибрационных состояний малых молекул, в которыхL=0,P=+

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The adiabatic Gaussians used for molecular systems, whereL=0,P=+, are generalized to nonadiabatic Gaussians in essentially the following way. Let\(g_s^{ad} = \prod\limits_{i = N_a + 1}^N {\exp [ - A_i^2 (s)|\bar r_i - \bar R_{gi} (s)|^2 ]} \) be a typical member of the adiabatic Gaussians. HereN a is the number of the nuclei andN−N a the number of the electrons. Now we replace\(\bar R_{gi} (s)\) by\(\left( {1/A_i (s)} \right)\sum\limits_{j = i}^{N_a } {a_{ij} (s)\bar r_j } \), where\(A_i (s) = \sum\limits_{j = 1}^{N_a } {a_{ij} (s)} \), and the obtained functionsg s is then multiplied by the function\(f_s (\bar n) = \mathop \prod \limits_{1 \leqslant p< q \leqslant N_a } (r_{pq}^2 - R_{pq}^2 )^{n_{pq} } (\exp [ - A_{pq}^2 (s) \cdot (r_{pq} + R_{pq} )^2 ] + \exp [ - A_{pq}^2 (s)(r_{pq} - R_{pq} )^2 ])\). The functionf s will determine the molecular structure (mean distances and mean angles) and we observe that in the limitA pq (s)→∞, when\(\bar n = 0\), the nonadiabatic Gaussian approaches the adiabatic Gaussian. The matrix elements <g s f s (n 12)Qf s′ (n′ 12)g s′ ≫,Q=1 andH, for a biatomic molecule with any number of electrons, are given in closed form. Finally the formulae are applied to the case H +2 , where the lowest vibrational states are calculated.

Riassunto

Le gaussiane adiabatiche usate per sistemi molecolari, in cuiL=0,P=+, sono generalizzate a gaussiane non adiabatiche essenzialmente nel modo seguente. Sia\(g_s^{ad} = \prod\limits_{i = N_a + 1}^N {\exp [ - A_i^2 (s)|\bar r_i - \bar R_{gi} (s)|^2 ]} \) un membro tipico delle gaussiane adiabatiche.N a è il numero dei nuclei edN−N a il numero degli elettroni. Ora si sostituisca\(\bar R_{gi} (s)\) con\(\left( {1/A_i (s)} \right)\sum\limits_{j = i}^{N_a } {a_{ij} (s)\bar r_j } \), in cui\(A_i (s) = \sum\limits_{j = 1}^{N_a } {a_{ij} (s)} \), e si moltiplichi la funzioneg s così ottenuta per la funzione\(f_s (\bar n) = \mathop \prod \limits_{1 \leqslant p< q \leqslant N_a } (r_{pq}^2 - R_{pq}^2 )^{n_{pq} } (\exp [ - A_{pq}^2 (s) \cdot (r_{pq} + R_{pq} )^2 ] + \exp [ - A_{pq}^2 (s)(r_{pq} - R_{pq} )^2 ])\). La funzionef s determinerà la struttura molecolare (distanze medie, angoli medi) e si osserva che nel limiteA pq (s)→∞, quando\(\bar n = 0\), la gaussiana non adiabatica si avvicina alla gaussiana adiabatica. Gli elementi di matrice <g s f s (n 12)Qf s′ (n′ 12)g s′ ≫,Q=1 eH per una molecola biatomica con un numero qualsiasi di elettroni sono dati in forma chiusa. Infine le formule sono applicate al caso H +2 , per cui si calcolano gli stati vibrazionali inferiori.

Резюме

Адиабитические Гауссианы, использованные для молекулярных систем сL=0, иP=+, обобщаются на случай неадиабатических Гауссианов. Пусть\(g_s^{ad} = \prod\limits_{i = N_a + 1}^N {\exp [ - A_i^2 (s)|\bar r_i - \bar R_{gi} (s)|^2 ]} \) является типичным членом адиабатических Гауссианов. ЗдесьN a есть число адер иN−N a число электронов. Мы теперя заменяем\(\bar R_{gi} (s)\) на\(\left( {1/A_i (s)} \right)\sum\limits_{j = i}^{N_a } {a_{ij} (s)\bar r_j } \), где\(A_i (s) = \sum\limits_{j = 1}^{N_a } {a_{ij} (s)} \) и полученная функцияg s затем умножается на функцию\(f_s (\bar n) = \mathop \prod \limits_{1 \leqslant p< q \leqslant N_a } (r_{pq}^2 - R_{pq}^2 )^{n_{pq} } (\exp [ - A_{pq}^2 (s) \cdot (r_{pq} + R_{pq} )^2 ] + \exp [ - A_{pq}^2 (s)(r_{pq} - R_{pq} )^2 ])\). Теперь функцияf s определяет молекулярную структуру (средние расстояния и средние углы) и мы получаем, что в пределеA pq(s)→∞, когда\(\bar n = 0\), неадиабатический Гауссиан переходит в адиабатический Гауссиан. Матричные элементы <g s f s (n 12)Qf s′ (n′ 12)g s′ ≫,Q=1 иH, для двухатомной молекулы с любым числом электронов. определяются в явном виде. Полученные формулы применяутся к случаю H +2 , для которого вычисляются низшие вибрационные состояния.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Almström:Nuovo Cimento,26 B, 279 (1975).

    Article  ADS  Google Scholar 

  2. J. R. Hoyland:Journ. Chem. Phys.,40, 3540 (1964).

    Article  ADS  Google Scholar 

  3. W. Koŀos:Acta Phys. Hung.,27, 241 (1969).

    Article  Google Scholar 

  4. Bateman Manuscript Project, Higher Transcendental Functions, Vol.1 (New York, N. Y., 1953), p. 254.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almström, H. A proposal for the calculation of the vibrational states of small molecules whereL=0,P=+. Nuov Cim B 49, 99–113 (1979). https://doi.org/10.1007/BF02737477

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737477

Navigation