Skip to main content
Log in

Mechanisms of intracellular trigger signal transmission in muscles: Strategy of rearrangements in evolution of the contractile function

  • Problem Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The paper describes our concept about the existence of a certain strategy of rearrangements of ionic mechanisms of he intracellular trigger signal transmission in muscles during their contractile function evolution. It is shown that the rearrangements of muscles to accelerate the single (discrete) contraction cycle is accompanied by a change of mechanisms of external stimulus transduction into an intracellular trigger signal: direct activation of intracellular effectors by extracellular Ca2+ is replaced by indirect mechanisms of Ca2+-, then Ca2+- and Na+-induced, and in skeletal muscle fibers of vertebrates (SMFV) of Na+-induced Ca2+ release from the intracellular depot, sarcoplasmic reticulum. These rearrangements promoted an intensification of the Ca2+ intracellular mobilization to provide for the most complete pulse control of SMFV phasic contractions by the CNS and their protection from undesirable peripheral influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruegg, J.C.,Calcium in Muscle Activation, Berlin, Heidelberg, 1988.

    Google Scholar 

  2. Fabiato, A., Calcium Release in Skinned Cardiac Cells: Variation with Species, Tissues, and Development,Fed. Proc., 1982, vol. 41, pp. 2238–2244.

    PubMed  CAS  Google Scholar 

  3. Caille, J., Ildefonse, M., and Rougier, O., Excitation-Contraction Coupling in Skeletal Muscle,Prog. Biophys. Molec. Biol., 1985, vol. 46, pp. 185–239.

    Article  CAS  Google Scholar 

  4. Somlyo, A.V., Bond, M., Somlyo, A.P., and Scarpa, A., Inositol Trisphosphate-Induced Calcium Release and Contraction in Vascular Muscle,Proc. Nail Acad. Sci. USA, 1985, vol. 82, pp. 5231–5235.

    Article  CAS  Google Scholar 

  5. Vergara, J., Tsien, R.Y., and Delay, M., Inositol 1,4,5-Trisphosphate: A Possible Chemical Link in Excitation-Contraction Coupling in Muscle,Proc. Natl Acad. Sci. USA, 1985, vol. 82, pp. 6352–6356.

    Article  PubMed  CAS  Google Scholar 

  6. Luttgau, H.C. and Spiecker, W., The Effect of Calcium Deprivation upon Mechanical and Electrophysiological Parameters in Skeletal Muscle Fibers of the Frog,J. Physiol., 1979, vol. 296, pp. 411–429.

    PubMed  CAS  Google Scholar 

  7. Gonzales-Serratos, M., Valle-Aguilera, R., Lathrop, R., and del Carmen Garcia, M., Slow Inward Calcium Currents Have No Obvious Role in Muscle Excitation-Contraction Coupling,Nature, 1982, vol. 298, pp. 292–294.

    Article  Google Scholar 

  8. Mikos, G.L., Snow, T.R., Failure of Inositol 1,4,5-Trisphosphate to Elicit or Potentiate Ca2+ Release from Isolated Skeletal Muscle Sarcoplasmic Reticulum,Biochim. Biophys. Acta, 1987, vol. 927, pp. 256–259.

    Article  PubMed  CAS  Google Scholar 

  9. Walker, J.W., Somlyo, A.V., Goldman, Y.E.,et al., Kinetics of Smooth and Skeletal Muscle Activation by Laser Pulse Photolysis of Caged Inositol 1,4,5-Trisphosphate,Nature, 1987, vol. 327, pp. 249–251.

    Article  PubMed  CAS  Google Scholar 

  10. Schneider, M.F. and Chandler, W.K., Voltage-ependent Charge Movement in Skeletal Muscle: A Possible Step in Excitation-Contraction Coupling,Nature, 1973, vol. 242, pp. 244–246.

    Article  PubMed  CAS  Google Scholar 

  11. Kovacs, L., Rios, E., and Schneider, M.F., Calcium Transients and Intramembrane Charge Movement in Skeletal Muscle Fibers,Nature, 1979, vol. 279, pp. 391–396.

    Article  PubMed  CAS  Google Scholar 

  12. Rios, E., Pizarro, G., and Stefani, E., Charge Movement and the Nature of Signal Transduction in Skeletal Muscle Excitation-Contraction Coupling,Ann. Rev. Physiol., 1992, vol. 54, pp. 109–133.

    Article  CAS  Google Scholar 

  13. Rios, E. and Stern, M.D., Calcium in Close Quarters: Microdomain Feedback in Excitation-Contraction Coupling and other Cell Biological Phenomena,Anna. Rev. Biophys. Biomol. Struct., 1997, vol. 26, pp. 47–82.

    Article  CAS  Google Scholar 

  14. Frank, G.B., Dihydropyridine Calcium Channel Antagonists Block and Agonist Potentiate High Potassium Contractures but not Twitches in Frog Skeletal Muscle,Japan. J. Physiol., 1990, vol. 40, pp. 205–224.

    Article  CAS  Google Scholar 

  15. Hui, C.S., Milton, R.L., and Eisenberg, R.S., Charge Movement in Skeletal Muscle Fibers Paralysed by the Calcium Entry Blocker D-600,Proc. Natl Acad. Sci., 1984, vol. 81, pp. 2582–2585.

    Article  PubMed  CAS  Google Scholar 

  16. Nesterov, V.P. and Fedorov, V.V., On Possible Mechanisms of Participation of Na and K Ions in the System of Electromechanical Coupling,Zh. Evol. Biokhim. Fiziol., 1971, vol. 7, pp. 303–308.

    CAS  Google Scholar 

  17. Nesterov, V.P., Membrane Translocation of Sodium Ions in Function of Skeletal Muscles,Struktura i Funktsii Biologicheskikh Membran (Structure and Functions of Biological Membranes), Leningrad, 1975, pp. 340–345.

  18. Severtsov, A.N., Obshchie voprosy evolyutsii (General Problems of Evolution), vol. 3, M.-L., 1945.

  19. Orbeli, L.A.,Voprosy evolyutsionnoi flziologii (Problems of Evolutionary Physiology), vol. 1, M.-L., 1961.

  20. Szent-Gyorgyi, A.,Chemistry of Muscular Contraction, New-York: Academic, 1947.

    Google Scholar 

  21. Nesterov, V.P., Possible Mechanisms of the Na+-Induced Ca2+ Release from the Sarcoplasmic Reticulum of Skeletal Muscle Fibers of Vertebrates,Zh. Fiziol. SSSR, 1988, vol. 34, pp. 60–66.

    CAS  Google Scholar 

  22. Isenberg, G. and Wendt-Galitelly, M.F., X-ray Microprobe Analysis of Sodium Concentration Reveals Large Transverse Gradient from the Sarcolemma to the Centre of Voltage Clamped Guinea-Pig Ventricular Myocytes,J. Physiol., 1990, vol. 420, p. 86.

    Google Scholar 

  23. Lederer, W.J., Niggly, E., and Hadley, R.W., Sodium—Calcium Exchange in Excitable Cell: Fuzzy Space,Science, 1990, vol. 248, p. 283.

    Article  PubMed  CAS  Google Scholar 

  24. Carmeliet, E., A Fuzzy Subsarcolemmal Space for Intracellular Na+ in Cardiac Cells,Cardiovasc. Res., 1992, vol. 26, pp. 433–442.

    Article  PubMed  CAS  Google Scholar 

  25. Potreau, D. and Raymond, G., Existence of a Sodium-Induced Calcium Release Mechanisms in Frog Skeletal Muscle Fibers,J. Physiol., 1982, vol. 333, pp. 463–480.

    PubMed  CAS  Google Scholar 

  26. Wang, S.Y., Peskoff, A., and Langer, G.A., Inner Sarcolemmal Leaflet Ca2+ Binding: Its Role in Cardiac Na/Ca Exchange,Biophys. J., 1996, vol. 70, pp. 2266–2290.

    PubMed  CAS  Google Scholar 

  27. Lipp, P. and Niggli, E., Sodium Current-Induced Calcium Signals in Isolated Guinea-Pig Ventricular Myocytes,J. Physiol., 1994, vol. 474, pp. 439–446.

    PubMed  CAS  Google Scholar 

  28. Nesterov, V.P. and Senchenkova, A.A., On Mechanisms of Electromechanical Coupling in Frog Phasic Muscle Fibers,Tsitologiya, 1975, vol. 17, pp. 167–174.

    CAS  Google Scholar 

  29. Nesterov, V.P., On Mechanisms of Na+ (Li+) Involvement in the Process of Trigger Signal Intracellular Transmission in Skeletal Muscles,Fiziol. Zh. SSSR, 1985, vol. 71, pp. 985–991.

    PubMed  CAS  Google Scholar 

  30. Nesterov, V.P., The Significance of Na+ in E-C Coupling in Muscle,Adv. Exp. Med. Biol., 1992, vol. 311, pp. 19–29.

    PubMed  CAS  Google Scholar 

  31. Nesterov, V.P., Regularities and Factors of Formation of Ion Composition in Muscles in Evolution of Animals,Zh. Evol Biokhim. Fiziol., 1990, vol. 26, pp. 259–267.

    PubMed  CAS  Google Scholar 

  32. Caille, J., Ildefonse, M., and Rougier, O., Evidence for an Action of Sodium Ions in the Activation of Contraction of Twitch Muscle Fiber,Pflugers Arch., 1979, vol. 379, pp. 117–119.

    Article  PubMed  CAS  Google Scholar 

  33. Nesterov, V.P., Demina, I.N., and Maximov, N.A., On Na+-Induced Ca2+ Release from Sarcoplasmic Reticulum at Excitation of Phasic Muscle Fibers,Dokl. Akad. Nauk SSSR, 1982, vol. 263, pp. 1267–1270.

    PubMed  CAS  Google Scholar 

  34. Cannell, M.B. and Allen, D.G., Model of Calcium Movements during Activation in the Sarcomere of Frog Skeletal Muscle,Biophys. J., 1984, vol. 45, pp. 913–925.

    Article  PubMed  CAS  Google Scholar 

  35. Stern, M.D. and Lakatta, E.G., Excitation-Contraction Coupling in the Heart: the State of the Question,FASEB J., 1992, vol. 6, pp. 3092–3100.

    PubMed  CAS  Google Scholar 

  36. Gyorke, S. and Palade, P., Role of Local Domains in the Selective Activation of Ca2+ from Sarcoplasmic Reticulum of Crayfish Skeletal Muscle Fibers,Am. J. Physiol, 1993, vol. 363, pp. 1505–1512.

    Google Scholar 

  37. Somlyo, A.V. and Somlyo, A.P., Electromechanical and Pharmacomechanical Coupling in Vascular Smooth Muscle,J. Pharmacol. Exp. Then, 1968, vol. 159, pp. 129–145.

    CAS  Google Scholar 

  38. Zachar, J.,Electrogenesis and Contractility in Skeletal Muscle Cells, Baltimore and London, 1971.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterov, V.P., Frank, G.B., Demina, I.N. et al. Mechanisms of intracellular trigger signal transmission in muscles: Strategy of rearrangements in evolution of the contractile function. J Evol Biochem Phys 36, 353–358 (2000). https://doi.org/10.1007/BF02737053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737053

Keywords

Navigation