Skip to main content
Log in

Localization and ontogeny of the orphan receptor OR-1 in the rat brain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

This study describes the expression of the OR-1 orphan receptor in embryonic, postnatal, and adult brain tissue studied byin situ hybridization. This newly characterized member of the nuclear receptor superfamily functions as a modulator of retinoic acid and thyroid hormone signalling by influencing gene activation by these hormones from a distinct promoter region. In the fetal brain OR-1 mRNA was observed from E13–E16 in the developing pons, tegmentum, pontine flexure, medulla, inferior and superior colliculi, cerebellum, hippocampus, thalamus, striatum, and cortical plate. At E18, OR-1 was expressed in the hippocampus, cerebellum, ventricular layer of the developing cortex and cortical plate, striatum, and olfactory bulb. In the E21 to early postnatal brain the highest expression of OR-1 mRNA was seen in the hippocampus, cerebellum, striatum, and olfactory bulb. The expression of OR-1 in the cerebellum increased during postnatal development and by d P21 OR-1 mRNA had reached the levels present in the adult in the cerebellar cortex. In the adult brain the highest expression of OR-1 mRNA was observed in the Ca1 area of the hippocampus and the cerebellar cortex. We conclude that OR-1 is widely expressed in the fetal brain, whereas in the postnatal and adult brains OR-1 mRNA is more discretely localized, and that the amount of OR-1 mRNA increases in the cerebellum during postnatal development. The results of this study suggest that, in the fetal brain, OR-1 has a spatially widespread role in modulating gene activation by retinoids and thyroid hormone, whereas in the adult brain this modulation occurs only in distinct neuronal populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham W. C., Dragunow M., and Tate W. P. (1991) The role of immediate early genes in the stabilization of long-term potentiation.Mol. Neurobiol. 5, 297–314.

    Article  PubMed  CAS  Google Scholar 

  • Agarwal V. R. and Sato S. M. (1993) Retinoic acid affects central nervous system development ofXenopus by changing cell fate.Mech. Dev. 44, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Allenby G., Boquel T., Saunders M., Kazmer S., Speck J., Rosenberger M., Lovey A., Kastner P., Grippo J., Chambon P., and Levin A. A. (1993) Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids.Proc. Natl. Acad. Sci. USA 90, 30–34.

    Article  PubMed  CAS  Google Scholar 

  • Baudry M. and Davis J. L., eds. (1991)Long-Term Potentiation. A Debate of Current Issues. MIT Press, Cambridge, MA.

    Google Scholar 

  • Bloch B., Normand E., Kovesdi I., and Böhlen P. (1992) Expression of the HBNF (heparin-binding neurite-promoting factor) in the brain of fetal, neonatal and adult rat: an in situ hybridization study.Dev. Brain Res. 70, 267–278.

    Article  CAS  Google Scholar 

  • Bradley D. J., Young W. S. III, and Weinberger C. (1989) Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary.Proc. Natl. Acad. Sci. USA 86, 7250–7254.

    Article  PubMed  CAS  Google Scholar 

  • Bradley D. J., Towle H. C., and Young W. S. III (1992) Spatial and temporal expression of α and β-thyroid hormone receptor mRNAs, including the β2-subtype, in the developing mammalian nervous system.J. Neurosci. 12, 2288–2302.

    PubMed  CAS  Google Scholar 

  • Bugge T. H., Pohl J., Lonnoy O., and Stunnenberg H. G. (1992) RXRα, a promiscuous partner of retinoic acid and thyroid hormone receptors.EMBO J. 11, 1409–1418.

    PubMed  CAS  Google Scholar 

  • Dagerlind Å., Friberg K., Bean A. J., and Hökfelt T. (1992) Sensitive messenger RNA detection using unfixed tissue—combined radioactive and non-radioactive in situ hybridization histochemistry.Histochemistry 98, 39–49.

    Article  PubMed  CAS  Google Scholar 

  • de Ortiz S. P., Cannon M. M., and Jamieson G. A. (1994) Expression of nuclear hormone receptors within the hippocampus: identification of novel orphan receptors.Mol. Brain Res. 223, 278–283.

    Google Scholar 

  • Dony C. and Gruss P. (1987) Specific expression of the Hox 1.3 homeobox gene in murine embryonic structures originating from or induced by the mesoderm.EMBO J. 6, 2965–2975.

    PubMed  CAS  Google Scholar 

  • Durston A. J., Timmermanns J. P. M., Hage W. J., Hendriks H. F. J., deVries N. J., Heideveld M., and Nieuwkoop P. D. (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system.Nature 340, 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Evans R. M. (1988) The steroid and thyroid hormone receptor superfamily.Science 240, 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Giordano T., Pan J. B., Casuto D., Watanabe S., and Arneric S. P. (1992) Thyroid hormone regulation of NGF, NT-3 and BDNF RNA in the adult rat brain.Mol. Brain Res. 16, 239–245.

    Article  PubMed  CAS  Google Scholar 

  • Green S. and Chambon P. (1988) Nuclear receptors enhance our understanding of transcriptional regulation.Trends Genet. 4, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Göttlicher M., Widmark E., Li Q., and Gustafsson J.-Å. (1992) Fatty acids activate a chimera of the clofibric acid-activated receptor and glucocorticoid receptor.Proc. Natl. Acad. Sci. USA 89, 4653–4657.

    Article  PubMed  Google Scholar 

  • Heyman R. A., Mangelsdorf D. J., Dyck J. A., Stein R. B., Eichele G., Evans R. M., and Thaller C. (1992) 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor.Cell 68, 397–406.

    Article  PubMed  CAS  Google Scholar 

  • Issemann I. and Green S. (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Nature 347, 645–650.

    Article  PubMed  CAS  Google Scholar 

  • Kadomatsu K., Tomomura M., and Muramatsu T. (1988) cDNA cloning and sequencing of a new gene intensely expressed in early differentation stages of embryonal carcinoma cells in mid-gestation period of mouse embryogenesis.Biochem. Biophys. Res. Commun. 151, 1312–1318.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan D. R., Matsumoto K., Lucarelli E., and Thiele C. J. (1993) Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentation of human neuroblastoma cells.Neuron 11, 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Kraft J. C. and Juchau M. R. (1993) 9-cis-retinoic acid: a direct-acting dysmorphogen.Biochem. Pharmacol. 46, 709–716.

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer P. J., Fairhurst J. L., Decker M. M., Chan C. P., Gluzman Y., Böhlen P., and Kovesdi I. (1991) Cloning, characterization and developmental regulation of two members of a novel human gene family of neurite outgrowth-promoting protein.Growth Factors 5, 99–114.

    PubMed  CAS  Google Scholar 

  • LaMantia A.-S., Colbert M. C., and Linney E. (1993) Retinoic acid induction and regional differentation prefigure olfactory pathway formation in the mammalian forebrain.Neuron 10, 1035–1048.

    Article  PubMed  CAS  Google Scholar 

  • Levin A. A., Sturzenbecker L. J., Kazmer S., Bosakowski T., Huselton C., Allenby G., Speck J., Kratzeisen C. I., Rosenberger M., Lovey A., and Grippo J. F. (1992) 9-cis-retinoic acid stereoisomer binds and activates the nuclear receptor RXRα.Nature 355, 359–361.

    Article  PubMed  CAS  Google Scholar 

  • Lucas P. C. and Granner D. K. (1992) Hormone response domains in gene transcription.Ann. Rev. Biochem. 61, 1131–1173.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf D. J., Ong E. S., Dyck J. A., and Evans R. M. (1990) Nuclear receptor that identifies a novel retinoic acid response pathway.Nature 345, 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Mellström B., Naranjo J. R., Santos A., Gonzalez A. M., and Bernal J. (1991) Independent expression of the α and β c-erbA genes in developing rat brain.Mol. Endocrinol. 5, 1339–1350.

    Article  PubMed  Google Scholar 

  • Näär A. M., Boutin J.-M., Lipkin S. M., Yu V. C., Holloway J. M., Glass C. K., and Rosenfeld M. G. (1991) The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors.Cell 65, 1255–1266.

    Article  Google Scholar 

  • O’Malley B. W. (1990) The steroid receptor superfamily: more excitement for the future.Mol. Endocrinol. 4, 363–369.

    PubMed  CAS  Google Scholar 

  • O’Malley B. W. and Conneely O. M. (1992) Orphan receptors: in search of a unifying hypothesis for activation.Mol. Endocrinol. 6, 1359–1361.

    Article  PubMed  CAS  Google Scholar 

  • Patterson S. L., Grover L. M., Schwarzkroin P. A., and Bothwell M. (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs.Neuron 9, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  • Power R. F., Lydon J. P., Conneely O. M., and O’Malley B. W. (1991) Dopamine activation of an orphan of the steroid receptor superfamily.Science 252, 1546–1548.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Tébar A. and Rohrer H. (1991) Retinoic acid induces NGF-dependent survival response and high-affinity NGF receptors in immature chick sympathetic neurons.Development 112, 813–820.

    PubMed  Google Scholar 

  • Ruizi Altaba A. and Jessell T. M. (1991) Retinoic acid modifies the pattern of cell differentation in the central nervous system of neurula stageXenopus embryos.Development 112, 945–958.

    CAS  Google Scholar 

  • Song C., Kokontis J. M., Hiipakka R. A., and Liao S. (1994) Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors.Proc. Natl. Acad. Sci. USA 91, 10,809–10,813.

    CAS  Google Scholar 

  • Teboul M., Enmark E., Li Q., Pelto-Huikko M., and Gustafsson J.-Å. (1995) A new member of the nuclear receptor superfamily modulates 9-cis retinoic acid signalling pathway.Proc. Natl. Acad. Sci. USA 92, 2096–2100.

    Article  PubMed  CAS  Google Scholar 

  • Umesono K., Murakami K. K., Thompson C. C., and Evans R. M. (1991) Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors.Cell 65, 1255–1266.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson D. G., Bailes J. A., and McMahon A. P. (1987) Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo.Cell 50, 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson D. G., Peter G., Dickson C., and McMahon A. P. (1988) Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse.EMBO J. 7, 691–695.

    PubMed  CAS  Google Scholar 

  • Willy P. J., Umesono K., Ong E. S., Evans R. M., Heyman R. A., and Mangelsdorf D. J. (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway.Genes Dev. 9, 1033–1045.

    Article  PubMed  CAS  Google Scholar 

  • Yu V. C., Delsert C., Andersen B., Holloway J. M., Devary O. V., Näär A. M., Kim S. Y., Boutin J.-M., Glass C. K., and Rosenfeld M. G. (1991) RXRβ: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D to their cognate response elements.Cell 67, 1251–1266.

    Article  PubMed  CAS  Google Scholar 

  • Zelent A., Krust A., Petkovich M., Kastner P., and Chambon P. (1989) Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin.Nature 339, 714–717.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X. K., Hoffmann B., Tran P. B.-V., Graupner G., and Pfahl M. (1992) Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors.Nature 355, 441–446.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kainu, T., Kononen, J., Enmark, E. et al. Localization and ontogeny of the orphan receptor OR-1 in the rat brain. J Mol Neurosci 7, 29–39 (1996). https://doi.org/10.1007/BF02736846

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736846

Index Entries

Navigation