Skip to main content
Log in

Rapid purification, site-directed mutagenesis, and initial characterization of recombinant RC3/neurogranin

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

RC3/Neurogranin is a postnatal-onset, forebrain-specific, thyroid hormone-regulated, protein kinase C (PKC) substrate that binds calmodulin (CaM) and accumulates in dendritic spines. We bacterially expressed and purified RC3 and, for comparison, GAP-43/neuromodulin to near homogeneity using relatively simple procedures. We then raised antisera against recombinant RC3 that does not crossreact with GAP-43 and is suitable for immunohistochemical analysis of brain slices. We also constructed over 30 RC3 sequence variants by PCR-mediated, site-directed mutagenesis, and purified four of these to near homogeneity. The elution profiles displayed by RC3 and sequence variants during purification on CaM-Sepharose columns suggest that two different affinity forms of the RC3-CaM complex coexist when Ca2+ is absent and that GAP-43-CaM interactions are far more sensitive to salt than those that occur between recombinant RC3 and CaM. Variant proteins in which serine 36 was changed failed to serve as a substrate for PKC, implicating this as the target residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander K. A., Watkins B. T., Doyle G. S., Walsh K. A., and Storm D. R. (1988) Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein.J. Biol. Chem. 263, 7544–7549.

    PubMed  CAS  Google Scholar 

  • Andreasen T. J., Leutje C. W., Heideman W., and Storm D. R. (1983) Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes.Biochemistry 22, 4615–4618.

    Article  PubMed  CAS  Google Scholar 

  • Apel E. D., Byford M. F., Au D., Walsh K. A., and Storm D. R. (1990) Identification of the protein kinase C phosphorylation site in neuromodulin.Biochemistry 29, 2330–2335.

    Article  PubMed  CAS  Google Scholar 

  • Baudier J., Bronner C., Kligman D., and Cole R. D. (1989) Protein kinase C substrates from bovine brain. Purification and characterization of neuromodulin, a neuron-specific calmodulin-binding protein.J. Biol. Chem. 264, 1824–1828.

    PubMed  CAS  Google Scholar 

  • Baudier J., Deloulme J. C., Van Dorsselaer A., Black D., and Matthes H. W. (1991) Purification and characterization of a brain-specific protein kinase C substrate, neurogranin.J. Biol. Chem. 266, 229–237.

    PubMed  CAS  Google Scholar 

  • Benowitz L. I. and Perrone-Bizzozero N. I. (1991a) The expression of GAP-43 in relation to neuronal growth and plasticity: when, where, how, and why?Prog. Brain Res. 89, 69–87.

    PubMed  CAS  Google Scholar 

  • Benowitz L. I. and Perrone-Bizzozero N. I. (1991b) The relationship of GAP-43 to the development and plasticity of synaptic connections.Ann. NY Acad. Sci. 627, 58–74.

    Article  PubMed  CAS  Google Scholar 

  • Chapman E. R., Au D., Alexander K. A., Nicolson T. A., and Storm D. R. (1991) Characterization of the calmodulin binding domain of neuromodulin.J. Biol. Chem. 266, 207–213.

    PubMed  CAS  Google Scholar 

  • Chen S.-J., Klann E., and Sweatt J. D. (1993) Proceedings of the 23rd Annual Meeting of the Society for Neuroscience, Washington, DC, Abstract #703.5.

  • Cimler B. M., Giebelhaus D. H., Wakim B. T., Storm D. R., and Moon R. T. (1987) Characterization of murine cDNAs encoding P-57, a neural-specific calmodulin-binding protein.J. Biol. Chem. 262, 12,158–12,163.

    CAS  Google Scholar 

  • Cimler B. M., Andreasen T. J., Andreasen K. I., and Storm D. R. (1985) P-57 is a neural specific calmodulin-binding protein.J. Biol. Chem. 260, 10,784–10,788.

    CAS  Google Scholar 

  • Coggins P. J. and Zwiers H. (1991) B-50 (GAP-43): biochemistry and functional neurochemistry of a neuron-specific phosphoprotein.J. Neurochem. 53, 1895–1901.

    Article  Google Scholar 

  • De Graan P. N., Oestreicher A. B., Schotman P., and Schrama L. H. (1991) Protein kinase C substrate B-50 (GAP-43) and neurotransmitter release.Prog. Brain Res. 89, 187–207.

    PubMed  Google Scholar 

  • Dekker L. V., De Graan P. N., and Gispen W. H. (1991) Transmitter release: target of regulation by protein kinase C?Prog. Brain Res. 89, 209–233.

    PubMed  CAS  Google Scholar 

  • Deloulme J. C., Sensenbrenner M., and Baudier J. (1991) A rapid purification method for neurogranin, a brain specific calmodulin-binding protein kinase C substrate.FEBS Lett. 282, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Gerendasy D. D., Herron S. R., Watson J. B., and Sutcliffe J. G. (1994) Mutational and biophysical studies suggest RC3/neurogranin regulates calmodulin availability.J. Biol. Chem. 269, 22,420–22,426.

    CAS  Google Scholar 

  • Gispen W. H., Nielander H. B., De Graan P. N., Oestreicher A. B., Schrama L. H., and Schotman P. (1991) Role of the growth-associated protein B-50/GAP-43 in neuronal plasticity.Mol. Neurobiol. 5, 61–85.

    PubMed  CAS  Google Scholar 

  • Iniguez M. A., Rodriguez-Pena A., Ibarrola N., Morreale de Escobar G., and Bernal J. (1992) Adult rat brain is sensitive to thyroid hormone. Regulation of RC3/neurogranin mRNA.J. Clin. Invest. 90, 554–558.

    PubMed  CAS  Google Scholar 

  • Karns L. R., Ng S.-C., Freeman J. A., and Fishman M. C. (1987) Cloning of complementary DNA for GAP-43 a neuronal growth-related protein.Science 236, 597–600.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y. C. and Storm D. R. (1990) Regulation of free calmodulin levels by neuromodulin: neuron growth and regeneration.Trends Pharmacol Sci. 11, 107–111.

    Article  PubMed  CAS  Google Scholar 

  • McLeod M., Stein M., and Beach D. (1987) The product of the mei3+ gene, expressed under control of the mating-type locus induces meiosis and sporulation in fission yeast.EMBO J. 6, 729–736.

    PubMed  CAS  Google Scholar 

  • Munoz A., Rodriguez-Pena A., Perez-Castillo A., Ferreiro B., Sutcliffe J. G., and Bernal J. (1991) Effects of neonatal hypothyroidism on rat brain gene expression.Mol. Endocrinol. 5, 273–280.

    Article  PubMed  CAS  Google Scholar 

  • Represa A., Deloulme J. C., Sensenbrenner M., Ben-Ari Y., and Baudier J. (1990) Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate.J. Neurosci. 10, 3782–3792.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. (1991) The role of protein kinase C and its neuronal substrates dephosphin B-50, and MARCKS in neurotransmitter release.Mol. Neurobiol. 5, 87–130.

    PubMed  CAS  Google Scholar 

  • Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Sanger F., Nicklen S., and Coulsen A. R. (1977) DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter S. M. and Fishman M. C. (1991) The neuronal growth cone as a specialized transduction system.Bioessays 13, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter S. M., Vartanian T., and Fishman M. C. (1992) GAP-43 as a plasticity protein in neuronal form and repair.J. Neurobiol. 23, 507–520.

    Article  PubMed  CAS  Google Scholar 

  • Studier W. F., Rosenberg A. H., Dunn J. J., and Dubendorff J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes.Methods Enzymol. 185, 60–88.

    Article  PubMed  CAS  Google Scholar 

  • Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  • Watson J. B., Battenberg E. F., Wong K. K., Bloom F. E., and Sutcliffe J. G. (1990) Subtractive cDNA cloning of RC3, a rodent cortex-enriched mRNA encoding a novel 78 residue protein.J. Neurosci. Res. 26, 397–408.

    Article  PubMed  CAS  Google Scholar 

  • Watson J. B., Sutcliffe J. G., and Fisher R. S. (1992) Localization of the protein kinase C phosphorylation/calmodulin-binding substrate RC3 in dendritic spines of neostriatal neuronsProc. Natl. Acad. Sci. USA 89, 8581–8585.

    Article  PubMed  CAS  Google Scholar 

  • Wojtkowiak Z., Briggs R. C., and Hnilica L. S. (1983) A sensitive method for staining proteins transferred to nitrocellulose sheets.Anal. Biochem. 129, 486.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerendasy, D.D., Herron, S.R., Wong, K.K. et al. Rapid purification, site-directed mutagenesis, and initial characterization of recombinant RC3/neurogranin. J Mol Neurosci 5, 133–148 (1994). https://doi.org/10.1007/BF02736729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736729

Index Entries

Navigation