Skip to main content
Log in

Transmembrane topology of the glutamate receptors

A tale of novel twists and turns

  • Minireview
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The glutamate receptor subunits were first thought to cross the cell membrane four times in a manner analogous to the neuronal nicotinic acetylcholine, GABAA, and glycine receptors. This model led the field for nearly five years, although it was frequently in conflict with the data. Recently, comparisons with bacterial proteins, epitope tagging experiments, and the construction of chimeras has produced a new model of glutamate receptor topology that is novel and quite unlike any of the other receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnard E. A., Darlison M. G., and Seeburg P. (1987) Molecular biology of the GABAA receptor: the receptor/channel superfamily.Trends NeuroSci. 10, 502–509.

    Article  CAS  Google Scholar 

  • Bennett J. A. and Dingledine R. (1995) Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop.Neuron 14, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Brake A. J., Wagenbach M. J., and Julius D. (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor.Nature 371, 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N., Schoepfer R., Monyer H., Ruppersberg J. P., Günther W., Seeburg P., and Sakmann B. (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor.Science 257, 1415–1418.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R., Hume R., and Heinemann S. (1992) Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor channels.J. Neurosci. 12, 4080–4087.

    PubMed  CAS  Google Scholar 

  • Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors.Annu. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M., Maron C., and Heinemann S. (1994) N-glycosylation site tagging suggests a three transmembrane domain toplogy for the glutamate receptor GluR1.Neuron 13, 1331–1343.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M., O’Shea-Greenfield A., Rogers S. W., and Heinemann S. (1989) Cloning by functional expression of a member of the glutamate receptor family.Nature 342, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M., Rogers S. W., O’Shea-Greenfield A., Deneris E. S., Hughes T. E., Gasic G. P., and Heinemann S. (1990) Glutamate receptor GluR-K1: structure, function, and expression in the brain, inThe Brain, vol. LV, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 41–56.

    Google Scholar 

  • Hume R. I., Dingledine R., and Heinemann S. F. (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability.Science 253, 1028–1031.

    Article  PubMed  CAS  Google Scholar 

  • Köhler M., Burnashev N., Sakmann B., and Seeburg P. (1993) Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing.Neuron 10, 491–500.

    Article  PubMed  Google Scholar 

  • Kuryatov A., Laube B., Betz H., and Kuhse J. (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structure similarity with bacterial amino acid-binding proteins.Neuron 12, 1291–1300.

    Article  PubMed  CAS  Google Scholar 

  • Martin L. J., Blackstone C. D., Levey A. I., Huganir R. L., and Price D. L. (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain.Neuroscience 53, 327–358.

    Article  PubMed  CAS  Google Scholar 

  • McGlade-McCulloh E., Yamamoto H., Tan S.-E., Brickey D. A., and Soderling T. R. (1993) Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II.Nature 362, 640–642.

    Article  PubMed  CAS  Google Scholar 

  • Molnar E., Baude A., Richmond S. A., Patel P. B., Somogyi P., and McIlhinney R. A. (1993) Biochemical and immunocytochemical characterization of antipeptide antibodies to a cloned GluR1 glutamate receptor subunit: cellular and subcellular distribution in the rat forebrain.Neuroscience 53, 307–326.

    Article  PubMed  CAS  Google Scholar 

  • Mori H., Masaki H., Yamakura T., and Mishina M. (1992) Identification by mutagenesis of a Mg2+-block site of the NMDA receptor channel.Nature 358, 673–675.

    Article  PubMed  CAS  Google Scholar 

  • Moss S. J., Blacksone C. D., and Huganir R. L. (1993) Phosphorylation of recombinant non-NMDA glutamate receptors on serine and tyrosine residues.Neurochem. Res. 18, 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi N., Schneider N. A., and Axel R. (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties.Neuron 5, 569–581.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S. (1992) Molecular diversity of glutamate receptors and implications for brain function.Science 258, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • O’Hara P. J., Sheppard P. O., Thogersen H., Venezia D., Haldeman B. A., McGrane V., Houamed K. M., Thomsen C., Gilbert T. L., and Mulvihill E. R. (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins.Neuron 11, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Petralia R. S. and Wenthold R. J. (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain.J. Comp. Neurol. 318, 329–354.

    Article  PubMed  CAS  Google Scholar 

  • Raymond L. A., Blackstone C. D., and Huganir R. L. (1993) Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase.Nature 361, 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Roche K. W., Raymond L. A., Blackstone C., and Huganir R. L. (1994) Transmembrane topology of the glutamate receptor sub-unit GluR6.J. Biol. Chem. 269, 11,679–11,682.

    CAS  Google Scholar 

  • Russell (1982)Form and Function, The University of Chicago Press, Chicago.

    Google Scholar 

  • Seeburg P. (1993) The molecular biology of mammalian glutamate receptor channels.Trends NeuroSci. 16, 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B., Keinanen K., Verdoorn T. A., Wisden W., Burnashev N., Herb A., Kohler M., Takagi T., Sakman B., and Seeburg P. H. (1990) Flip and flop: a cell specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Stern-Bach Y., Bettler B., Hartley M., Sheppard P. O., O’Hara P. J., and Heinemann S. (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins.Neuron 13, 1345–1357.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan J. M., Traynelis S. F., Chen H.-S. V., Escobar W., Heinemann S. F., and Lipton S. A. (1994) Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor.Neuron 13, 929–936.

    Article  PubMed  CAS  Google Scholar 

  • Taverna F. A., Wang L., MacDonald J. F., and Hampson S. R. (1994) A transmembrane model for an ionotropic glutamate receptor predicted on the basis of the location of asparagine-linked oligosaccharides.J. Biol. Chem. 269, 14,159–14,164.

    CAS  Google Scholar 

  • Tingley W. H., Roche K. W., Thompson A. K., and Huganir R. L. (1993) Regulation of NMDA receptor phosphorylation by alternative splicing in the C-terminal domain.Nature 364, 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Uchino S., Sakimura K., Nagahari K., and Mishina M. (1992) Mutations in a putative agonist binding region of the AMPA-selective glutamate receptor channel.FEBS Lett. 308, 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Valera S., Hussy N., Evans R. J., Adami N., North R. A., Surprenant A., and Buell G. (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP.Nature 371, 516–519.

    Article  PubMed  CAS  Google Scholar 

  • Verdoorn T. A., Burnashev N., Monyer H., Seeburg P. H., and Sakmann B. (1991) Structural determinants of ion flow through recombinant glutamate receptor channels.Science 252, 1715–1718.

    Article  PubMed  CAS  Google Scholar 

  • Wang L.-Y., Taverna F. A., Huang X.-P., MacDonald J. F., and Hampson D. R. (1993) Phosphorylation and modulation of a kainate receptor (GluR6) by cAMP-dependent protein kinase.Science 259, 1173–1175.

    Article  PubMed  CAS  Google Scholar 

  • Wo Z. G. and Oswald R. E. (1994) Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation.Proc. Natl. Acad. Sci. USA 91, 7145–7158.

    Article  Google Scholar 

  • Yellen G., Jurman M. E., Abramson T., and MacKinnon R. (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel.Science 251, 939–942.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, T.E. Transmembrane topology of the glutamate receptors. J Mol Neurosci 5, 211–217 (1994). https://doi.org/10.1007/BF02736722

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736722

Index Entries

Navigation