Skip to main content
Log in

Wave equations for zero-mass particle with invariant helicities

Волновые уравнения для частиц нулевой массы с инвариантными спиральностями

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

We present a brief discussion of the difficulties associated with taking the limitm→0 in massive-particle equations of the formi(∂ψ/∂t)=, in which ψ transforms according to theD(0,s)⊕D(s,0) representation of the homogeneous Lorentz group. It is pointed out that, though the HamiltonianH tends to a well-defined form asm→0, the resulting wave equation is still unsatisfactory as the invariant scalar product (in the space of solutions of the wave equation) has an unacceptable form. We observe that this difficulty is due to the indecomposability of the representation of the Poincaré group over wave functions transforming asD(0,s)⊕D(s,0) in the massless case. Making due allowance for this fact we obtain, in close parallel to the treatment for massive particles, wave equations for zero-mass particles with invariant helicities ±s. The relevant invariant scalar products are also determined.

Riassunto

Si presenta una breve discussione associata con il limitem→0 in equazioni per particelle con massa della formai(∂ψ/∂t)=, in cuiψ si trasforma secondo la rappresentazioneD(0,s)⊕C(s,0) del gruppo di Lorentz omogeneo. Si mette in rilievo che, sebbene l’hamiltonianoH tenda ad una forma ben definita quandom→0, l’equazione d’onda risultante non è ancora soddisfacente in quanto il prodotto scalare invariante (nello spazio delle soluzioni dell’equazione d’onda) ha una forma inaccettabile. Si osserva che questa difficoltà è dovuta alla indecomponibilità della rappresentazione del gruppo di Poincaré rispetto alle funzioni d’onda che si trasformano comeD(0,s)⊕D(s, 0) nel caso senza massa. Tenendo dovuto conto di questo fatto si ottengono, in stretta analogia con il trattamento per particelle con massa, equazioni per particelle con massa nulla con elicità invarianti ±s. Si determinano anche i relativi prodotti scalari invarianti.

Реэюме

Вкратце обсуждаются трудности, воэникаюшие при переходе к пределуm→;0 в уравнениях видаi(∂ψ/∂t)=H у с отличной от нуля массой частиц, в которых ψ преобраэуется согласно представлениюD(0,s)⊕D(s, 0) однородной группы Лорентца. Отмечается, что хотя Гамильтониан Я стремится к хорощо иэвестному выражению приm→0, но окончательное волновое уравнение является неудовлетворит ельным, так как инвариантное скалярное проиэведение (в пространстве рещений волнового уравнения) имеет неприемлемый вид. Мы обнаруживаем, что зта трудность обусловлена неприводимостью представления группы Пуанкаре череэ волновые функции, преобраэуюшиеся, какD(0,s)⊕D(s,0) в случае нулевой массы. Учитывая зтот факт, мы, по аналогии с рассмотрением для частиц с отличной от нуля массой, получаем волновое уравнение для частиц нулевой массы с инвариантными спиральностями ±s. Также определяются соответствуюшие инвариантные скалярные проиэведения.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Corson:Introduction to Tensors, Spinors and Relativistic Wave Equations (New York, 1953).

  2. L. L. Foldy:Phys. Rev.,102, 568 (1956).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. E. P. Wigner:Ann. of Math.,40, 149 (1939).

    Article  MathSciNet  Google Scholar 

  4. D. L. Weaver, C. L. Hammer andR. H. Good jr.:Phys. Rev.,153 B, 1241 (1964).

    MathSciNet  Google Scholar 

  5. H. Joos:Fortsch. Phys.,10, 65 (1962).

    Article  ADS  MATH  Google Scholar 

  6. S. Weinberg:Phys. Rev.,133, B 1318 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  7. D. L. Pursey:Ann. of Phys.,32, 157 (1965).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Wu-Ki-Tung:Phys. Rev.,156, 1385 (1967).

    Article  ADS  Google Scholar 

  9. SeeShay, Song andGood (9) for explicit verification in the case ofs=3/2.

    Google Scholar 

  10. D. Shay, H. S. Song andR. H. Good jr.:Suppl. Nuovo Cimento,3, 455 (1965).

    Google Scholar 

  11. M. Seetharaman andP. M. Mathews:Journ. Math. Phys.,13, 938 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Seetharaman, J. Jayaraman andP. M. Mathews:Journ. Math. Phys.,12, 1080 (1971).

    Google Scholar 

  13. S. Weinberg:Phys. Rev.,134, B 882 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  14. Y. Frishman andC. Itzykson:Phys. Rev.,180, 1556 (1969).

    Article  ADS  Google Scholar 

  15. For early work on wave equations for zero-mass particles, seeDe Wet (14) and alsoCorson (1).

    Article  MathSciNet  ADS  Google Scholar 

  16. J. S. De Wet:Phys. Rev.,58, 236 (1940).

    Article  MathSciNet  ADS  Google Scholar 

  17. Harish-Chandra:Proc. Roy. Soc., A186, 502 (1946).

    Article  MathSciNet  ADS  Google Scholar 

  18. V. I. Fushchich andA. L. Grischenko:Lett. Nuovo Cimento,4, 927 (1970).

    Article  Google Scholar 

  19. M. T. Simon:Lett. Nuovo Cimento,2, 616 (1971).

    Article  Google Scholar 

  20. S. A. Bludman:Phys. Rev.,107, 1163 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  21. It may be noted that different reduced forms of the Kemmer equation behave differently when the limitm→0 is taken. In the Sakata-Taketani form (19) this limit makes no sense, while it leads to well-defined results (20) if the Kemmer equation is first reduced to the form of eq. (1).

    Google Scholar 

  22. S. Sakata andM. Taketani:Proc. Phys. Math. Soc. Japan,22, 757 (1940).

    Google Scholar 

  23. M. Seetharaman, J. Jayaraman andP. M. Mathews:Nucl. Phys.,19 B, 625 (1970).

    Article  ADS  Google Scholar 

  24. N. Kemmer:Proc. Roy. Soc., A173, 91 (1939).

    Article  MathSciNet  ADS  Google Scholar 

  25. C. L. Hammer andR. H. Good jr.:Phys. Rev.,108, 882 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. See ref. (10,11) and earlier work quoted therein.

  27. R. Shaw:Nuovo Cimento,37, 1086 (1965).

    Article  MATH  Google Scholar 

  28. M. Seetharaman, J. Jayaraman andP. M. Mathews:Journ. Math. Phys.,12, 835 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  29. P. M. Mathews:Journ. Math. Phys. Sci. Madras,1, 197 (1967).

    MATH  Google Scholar 

  30. In the more general case when the local transformation property isD(m, n), there is still just one helicity state (with helicity value equal toε(n−m)) which is Lorentz invariant. An elementary derivation establishing this result, as well as the corresponding results when the representation according to which the wave function transforms is infinite dimensional, was given in an earlier paper (26). The fact that from zero-mass, helicity-λ, particle operators one can construct finite-component covariant fields transforming only according to the representations of the typeD(m, m +λ) was first noticed byWeinberg (12).

    Article  MathSciNet  ADS  Google Scholar 

  31. M. T. Simon, M. Seetharaman andP. M. Mathews:Covariant wave functions with invariant helicity for massless particles, to appear inInt. Journ. Theor. Phys.

  32. The basic reason is that the invariant state with energyεp has helicityεs inD(0,s) and —εs inD(s, 0). See ref. (27)

    Google Scholar 

  33. P. M. Mathews:Journ. Math. Phys. Sci. Madras,4, 58 (1970).

    Google Scholar 

  34. J. Jayaraman: Ph. D. Thesis, Madras University (1972).

  35. P. M. Mathews:Phys. Rev.,143, 985 (1966).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seetharaman, M., Simon, M.T. & Mathews, P.M. Wave equations for zero-mass particle with invariant helicities. Nuov Cim A 12, 788–800 (1972). https://doi.org/10.1007/BF02736622

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736622

Navigation