Skip to main content
Log in

Oxygen diffusion through Al-doped amorphous SiO2

  • Section I: Basic And Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Oxygen (O) diffusion through pure and aluminum (Al)-doped amorphous silica is investigated by using secondary ion mass spectrometry to profile the diffusion of an18O tracer. The oxides are formed by the thermal oxidation of polymer-derived SiCN and SiAlCN ceramics. The authors demonstrate that a small amount of Al dopant can significantly inhibit both the interstitial and network diffusion of O. The activation energy of O network diffusion for Al-doped silica is two times higher than that for pure silica. The results are discussed in terms of the modification of Al doping on the network structure of the otherwise pure silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Mikkelsen, Self-Diffusivity of Network Oxygen in Vitreous SiO2,Appl. Phys. Lett., 1984,45, p 1187–1189

    Article  ADS  Google Scholar 

  2. H. Yinnon and A.R. Cooper, Oxygen Diffusion in Multicomponent Glass Forming Silicates,Phys. Chem. Glasses, 1980,21, p 204–211

    Google Scholar 

  3. H.A. Schaeffer and K. Muehlenbachs, Correlations Between Oxygen-Transport Phenomena in Non-Crystalline Silica,J. Mater. Sci., 1978,13, p 1146–1148

    Article  ADS  Google Scholar 

  4. J.D. Kalen, R.S. Boyce, and J.D. Cawley, Oxygen Tracer Diffusion in Vitreous Silica,J. Am. Ceram. Soc., 1991,74, p 203–209

    Article  Google Scholar 

  5. M.A. Lamkin, F.L. Riley, and R.J. Fordham, Oxygen Mobility in Silicon Dioxide and Silicate Glasses: A Review,J. Eur. Ceram. Soc., 1992,10, p 347–367

    Article  Google Scholar 

  6. B.E. Deal and A.S. Grove, General Relationship for Thermal Oxidation of Silicon,J. Appl. Phys., 1965,36, p 3770–3778

    Article  ADS  Google Scholar 

  7. N.S. Jacobson, Corrosion of Silicon-Based Ceramics in Combustion Environments,J. Am. Ceram. Soc., 1993,76, p 3–28

    Article  Google Scholar 

  8. Z. Zheng, R.E. Tressler, and K.E. Spear, The Effect of Sodium Contamination on the Oxidation of Single-Crystal Silicon-Carbide,Corros. Sci., 1992,33, p 545–556

    Article  Google Scholar 

  9. E. Opila, Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon-Carbide,J. Am. Ceram. Soc., 1995,78, p 1107–1110

    Article  Google Scholar 

  10. R.E. Tressler, Theory and Experiment in Corrosion of Advanced Ceramics,Corrosion of Advanced Ceramics, K.G. Nickel, Ed., Kluwer Academic Publisher, Dordrecht, 1994, p 3–22

    Google Scholar 

  11. H. Rawson, Properties and Applications of Glass,Glass Science and Technology, Elsevier, North-Holland, 1980

    Google Scholar 

  12. L. An, Y. Wang, L. Bharadwaj, Y. Fan, L. Zhang, D. Jiang, Y. Sohn, V. Desai, J. Kapat, and L. Chow, Amorphous Silico-aluminum Carbonitride with Ultrahigh Oxidation/Hot-Corrosion Resistance,Adv. Eng. Mater., 2004,6(5), p 337–340

    Article  Google Scholar 

  13. Y. Wang, Y. Fan, L. Zhang, S. Burton, Z. Gan, and L. An, Oxidation of Polymer-Derived SiAlCN Ceramics,J. Am. Ceram. Soc., 2005,88, p 3075–3080

    Article  Google Scholar 

  14. L. Bharadwaj, Y. Fan, L. Zhang, D. Jiang, and L. An, Oxidation Behavior of A Fully Dense Polymer-Derived Amorphous Silicon Carbonitride Ceramic,J. Am. Ceram. Soc., 2004,87, p 483–486

    Article  Google Scholar 

  15. A. Dhamne, W. Xu, B. Fookes, Y. Fan, L. Zhang, S. Burton, J. Hu, J. Ford, and L. An, Polymer-Ceramic Conversion of Liquid Polyaluminasilazanes for SiAlCN Ceramic,J. Am. Ceram. Soc., 2005,88, p 2415–2419

    Article  Google Scholar 

  16. L. Bharadwaj, “Oxidation of Polymer-Derived Ceramics,” Master Thesis, University of Central Florida, 2004

  17. J.A. Costello and R.E. Tressler, Isotope Labeling Studies of the Oxidation of Silicon at 1000-Degrees-C and 1300-Degrees-C,J. Electrochem. Soc., 1984,131, p 1944–1947

    Article  Google Scholar 

  18. J.D. Cawley and R.S. Boyce, A Solution of the Diffusion Equation for Double Oxidation in Dry Oxygen Including Lazy Exchange Between Network and Interstitial Oxygen,Philos. Mag. A, 1988,4, p 589–601

    Article  ADS  Google Scholar 

  19. J. Rodríguez-Viejo, F. Sibieude, M.T. Clavaguuera-Mora, and C. Monty, O-18 Diffusion Through Amorphous SiO2 and Cristobalite,Appl. Phys. Lett., 1993,63, p 1906–1908

    Article  ADS  Google Scholar 

  20. S.V. King, Ring Configurations in a Random Network Model of Vitreous Silica,Nature, 1967,213, p 1112–1113

    Article  ADS  Google Scholar 

  21. P. Umari and A. Pasquarello, Modeling of the Raman Spectrum of Vitreous Silica: Concentration of Small Ring Structures,Physica B, 2002,316–317, p 572–574

    Article  Google Scholar 

  22. J.P. Rino, I. Ebbsjö, R.K. Kalia, A. Nakano, and P. Vashishta, Structure of Rings in Vitreous SiO2,Phys. Rev. B: Condens. Matter, 1993,47(6), p 3053–3062

    ADS  Google Scholar 

  23. K. Vollmayr, W. Kob, and K. Binder, Cooling-Rate Effects in Amorphous Silica: A Computer-Simulation Study,Phys. Rev. B: Condens. Matter, 1996,54(22), p 15808–15827

    ADS  Google Scholar 

  24. T. Bakos, S.N. Rashkeev, and S.T. Pantelides, Reactions and Diffusion of Water and Oxygen Molecules in Amorphous SiO2,Phys. Rev. Lett., 2002,88, 055508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Sohn, Y., An, L. et al. Oxygen diffusion through Al-doped amorphous SiO2 . JPED 27, 671–675 (2006). https://doi.org/10.1007/BF02736571

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736571

Keywords

Navigation