Skip to main content
Log in

Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

This paper presents a state of the art review on geometrically nonlinear analysis of shell structures that is limited to the co-rotational approach and to flat triangular shell finite elements. These shell elements are built up from flat triangular membranes and plates. We propose an element comprised of the constant strain triangle (CST) membrane element and the discrete Kirchhoff (DKT) plate element and describe its formulation while stressing two main issues: the derivation of the geometric stiffness matrix and the isolation of the rigid body motion from the total deformations. We further use it to solve a broad class of problems from the literature to validate its use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Adini and R.W. Clough (1961). Analysis of plate bending by the finite element method. Report to Natl. Sci. Foundation/USA, G7337.

  2. S. Ahmad, B.M. Irons and O.C. Zienkiewicz (1970). Analysis of thick and thin shell structures by curved finite elements.Int. J. Nummer. Methods Eng.,2, 419–451.

    Article  Google Scholar 

  3. D.J. Allman (1970). Triangle finite element for plate bending with constant and linearly vaqrying bending moments. InProc. IUTAM Symposium on High Speed Computing of Elastic Structures, pages 36–105, University of Liegh.

  4. D.J. Allman (1984). A compatible triangular element including vertex rotations for plane elasticity analysis.Computers & Structures,19, 1–8.

    Article  MATH  Google Scholar 

  5. D.J. Allman (1988). A quadrilateral finite element including vertex rotations for plane elasticity analysis.Int. J. Num. Method Engng.,26, 717–730.

    Article  MATH  Google Scholar 

  6. D.J. Allman (1988). The constant strain triangle with drilling rotations: a simple prospect for shell analysis. InProc. 6th International Conference on The Mathematics of Finite Element and Application, pages 233–240, MAFELAP VI, Ed. Whiteman, J.R.

  7. D.J. Allman (1988). Evaluation of the constant strain triangle with drilling rotation.Int. J. Num. Method Engng.,26(12), 2645–2655.

    Article  MATH  Google Scholar 

  8. D.J. Allman (1991). Analysis of general shells by flat facet finite element approximation.Aeronaut. J.,95, 194–203.

    Google Scholar 

  9. D.J. Allman (1993). Variational validation of a membrane finite element with drilling rotations.Communications in Numerical Methods in Engineering,9, 345–351.

    Article  MATH  Google Scholar 

  10. D.J. Allman (1994). A basic flat facet finite element for the analysis of general shells.Int. J. Num. Method Engng. 37, 19–35.

    Article  MATH  Google Scholar 

  11. D.J. Allman and L.S.D. Morley (2000). The “constant” bending moment three-noded triangle.Communications in Numerical Methods in Engineering,9, 345–351.

    Article  Google Scholar 

  12. K. Alvin, H.M. de la Fuente, B. Haugen and C.A. Felippa (1992). Membrane triangles with corner drilling freedoms. I. The EFF element.Finite Element Anal. Des.,12, 163–187.

    Article  MATH  Google Scholar 

  13. J.H. Argyris (1964).Recent Advances in Matrix methods of Structural Analysis. Pergamon Press.

  14. J.H. Argyris. (1965) Triangular elements in plate bending-conforming and nonconforming solutions.Proc. Conf. Matrix Meth. Struc. Mech., pages 11–190, Air Force Institute of Technology, Wright-Patterson A.F.B., Ohio.

    Google Scholar 

  15. J.H. Argyris (1965). Matrix displacement analysis of anisotropic shells by triangular elements.Aeronautical Journal of The Royal Aeronautical Society,69, 801–805.

    Google Scholar 

  16. J.H. Argyris. (1982). An excursion into large rotations.Comp. Meth. Appl. Mech. & Engng.,32, 85–155.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.H. Argyris, H. Balmer and I. Doltsinis (1987). Implementation of a nonlinear capability on a linear software system.Comp. Meth. Appl. Mech. & Engng.,65, 267–291.

    Article  MATH  Google Scholar 

  18. J.H. Argyris and P.C. Dunne. (1975). On the application of the natural mode technique to small strain large displacement problems. InWorld Congress on Finite Element Methods in Structural Mechanics, Bournemouth.

  19. J.H. Argyris, P.C. Dunne, G. Malejannakis and E. Schelkle (1977). A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems.Comp. Meth. Appl. Mech. & Engng.,11, 97–131. and10, 371–403.

    Article  MATH  Google Scholar 

  20. J.H. Argyris, M. Haase and H.P. Mlejnek (1980). On an unconventional but natural formation of the stiffness matrix.Comp. Meth. Appl. Mech. & Engng.,22, 371–403.

    Google Scholar 

  21. J.H. Argyris, H. Balmer, J.St. Doltsinis, P.C. Dunne, M. Haase, G.A. Kleiber, G. Malejannakis and H.P. Mlejnek (1979). Finite element method—the natural approach.Comp. Meth. Appl. Mech. & Engng.,17/18, 1–106.

    Article  Google Scholar 

  22. J.H. Argyris, M. Papadrakakis and L. Karapitta (2000). Elastoplastic analysis of shells with the triangular element TRIC. InThe Fourth International Colloquium on Computational of Shell & Spatial Structures Chania-Crete, Greece.

  23. J.H. Argyris and L. Tenek (1993). A natural triangular layered element for bending analysis of isotropic, sandwich, laminated composite and hybrid plates.Comp. Meth. Appl. Mech. & Engng.,109, 197–218.

    Article  MATH  Google Scholar 

  24. J.H. Argyris and L. Tenek (1994). Buckling of multilayered composite plates by natural shear deformation matrix theory.Comp. Meth. Appl. Mech & Engng.,111, 37–59.

    Article  MATH  Google Scholar 

  25. J.H. Argyris and L. Tenek (1994). Linear and geometrically nonlinear bending of isotropic and multilayered composite plates by the natural mode method.Comp. Meth. Appl. Mech. & Engng.,113, 207–251.

    Article  MATH  Google Scholar 

  26. J.H. Argyris and L. Tenek (1994). High-temperature bending, buckling, and post buckling of laminated composite plates using the natural mode method.Comp. Meth. Appl. Mech. & Engng,117, 105–142.

    Article  MATH  Google Scholar 

  27. J.H. Argyris and L. Tenek (1994). An efficient and locking free flat anisotropic plate and shell triangular element.Comp. Mech & Engng.,118, 63–119.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.H. Argyris and L. Tenek (1994). A practicable and locking-free laminated shallow shell triangular element.Comp. Meth. Appl. Mech. & Engng.,119, 215–282.

    Article  MATH  Google Scholar 

  29. J.H. Argyris, L. Tenek and L. Olofsson (1997). TRIC: a simple but sophisticated 3-node triangular element based on 6 rigid body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells.Comp. Meth. Appl. Mech. & Engng.,145, 11–85.

    Article  MATH  Google Scholar 

  30. D.G. Ashwell (1960). On the large deflection of a spherical shell with an inward point load. Proceeding ofI.U.T.A.M. Symposium on The Theory of Thin Elastic Shells, pages 43–63, Delft, Aug. 1969, North Holland, Amsterdam.

    Google Scholar 

  31. S. Atluri, R.H. Gallagher and O.C. Zienkiewicz (Eds.) (1983),Hybrid and mixed finite element methods. Wiley, Chichester.

    MATH  Google Scholar 

  32. I. Babuska (2001).The finite element method and its reliability. Clarendon, Oxford, (England).

    Google Scholar 

  33. I. Babuska and T. Strouboulis (2001).The finite element and its reliability. Clarendon Press, Oxford.

    MATH  Google Scholar 

  34. J. Bäcklund (1973). Finite element analysis of nonlinear structures.Ph.D. Thesis, Goteborg: Chalmers Tekniska Hogskola.

    Google Scholar 

  35. K.J. Bathe (1982).Finite element procedures in engineering analysis. Prentice-Hall, New Jersey.

    Google Scholar 

  36. K.J. Bathe (1996).Finite element procedures. Prentice-Hall, New Jersey.

    Google Scholar 

  37. K.J. Bathe and S. Bolourchi (1980). A geometric and material nonlinear plate and shell element.Computers & Structures,11, 23–48.

    Article  MATH  Google Scholar 

  38. K.J. Bathe, D. Chapelle and P.S. Lee (2003). A shell problem “highly sensitive” to thichness change.Int. J. Num. Method Engng.,57, 1039–1052.

    Article  MATH  Google Scholar 

  39. K.J. Bathe and L.W. Ho (1980). A simple and effective element for analysis of general shell structures.Computers & Structures,13, 673–681.

    Article  Google Scholar 

  40. K.J. Bathe, E. Ramm and E.L. Wilson (1975). Finite element formulations for large deformation dynamics analysis.Int. J. Num. Method Engng. 9, 353–386.

    Article  MATH  Google Scholar 

  41. J.M. Battini and C. Pacoste (2001). Co-rotational beam elements with warping effects in instability problems.Compul. Methods. Appl. Mech. Engng.,191, 1755–1789.

    Article  Google Scholar 

  42. J.M. Battini and C. Pacoste (2004). On the choice of local element frame for corotational traingular elements.Commun. Numer. Meth. Engng. 20, 819–825.

    Article  MATH  Google Scholar 

  43. J.L. Batoz (1977). Analyse non linéare des coques minces élastiques de formes arbitraries par élements triangulaires courbés.Ph.D. Thesis, Laval University, Quebec.

    Google Scholar 

  44. J.L. Batoz, K.J. Bathe and L.W. Ho (1980). A study of three noded triangular plate bending elements.Int. J. Num. Meth. Engng.,15, 1771–1812.

    Article  MATH  Google Scholar 

  45. J.L. Batoz, A. Cattopadhyay and G. Dhatt (1976). Finite element large deffection analysis of shallow shells.Int. J. Num. Meth. Engng.,10, 39–58.

    Article  MATH  Google Scholar 

  46. J.L. Batoz and G. Dhatt (1972). Development of two simple shell elements.AIAA Jnl.,10, 237–238.

    Google Scholar 

  47. J.L. Batoz, F. Hammadi, C. Zheng and W. Zhong (1998). On the linear analysis of plates and shells using a new sixteen dof flat shell element. InAdvances in Finite Element Procedures and Techniques, pages 31–41, Civil-Comp Press, Edinburgh.

    Google Scholar 

  48. J.L. Batoz, C.L. Zheng and F. Hammadi (2001). Formulation and evaluation of new triangular, quadrilateral, pentagonal and hexagonal discrete Kirchhoff plate/shell elemets.Int. J. Num. Meth. Engng.,52, 615–630.

    Article  MATH  MathSciNet  Google Scholar 

  49. G.P. Bazeley, B.M. Cheung, B.M. Irons and O.C. Zienkiewicz (1965). Triangular elements in plate beinding-conforming and nonconforming solutions. InProc. Conf. Matrix Meth. Struc. Mech., Air Force Institute of Technology, Wright-Patterson A.F.B., Ohio.

    Google Scholar 

  50. P.X. Bellini and A. Chulya (1987). An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations.Computers and Structures,26, 99–110.

    Article  MATH  Google Scholar 

  51. T. Belytschko (1976). A survey of numerical methods and computer programs for dynamic structural element.Nucl. Engng Des. 37, 23–34.

    Article  Google Scholar 

  52. T. Belytshko (2000).Nonlinear finite elements for continua and structures. Wiley Chichester.

    Google Scholar 

  53. T. Belytschko and L. Glamm (1979). Application of high order corotational stretch theories to nonlinear finite element analysis.Computers and Structures,10, 175–182.

    Article  MATH  Google Scholar 

  54. T. Belytschko and J. Hsein (1973). Nonlinear transient analysis with convected co-ordinates.Int. J. Num. Meth. Engng.,7, 255–271.

    Article  MATH  Google Scholar 

  55. T. Belytshko, J. Lin and C.S. Tsay (1984). Explicit algorithms for the nonlinear dynamics of shells.Comp. Meth. Appl. Mech. Engng. 42, 225–251.

    Article  Google Scholar 

  56. T. Belytshko and L. Schwer (1977). Large displacement, transient analysis of space frame.Int. J. Num. Meth. Engng. 11, 65–84.

    Article  Google Scholar 

  57. T. Belytschko, H. Stolarski, W.K. Lui, N. Carpenter and J.S. Ong (1985). Stress projection for membrane and shear looking in shell finite element.Comp. Meth. Appl. Mech. Engng.,51, 221–258.

    Article  MATH  Google Scholar 

  58. T. Belytschko, B.L. Wong and H. Stolarski (1989). Assumed strain stabilization procedure for the 9-node Lagrangian shell element.Int. J. Num. Meth. Engng.,28, 385–414.

    Article  MATH  Google Scholar 

  59. P.G. Bergan, G. Horrigmoe, B. Krakeland and T.H. Soreide (1978). Solution of nonlinear finite element problems.Int. J. Numer. Meths. Eng.,12, 1677–1696.

    Article  MATH  Google Scholar 

  60. P.G. Bergan and C.A. Felippa (1985). A stringular membrane element with rotational degrees of freedom.Comp. Meth. Appl. Mech. Engng.,50, 25–69.

    Article  MATH  Google Scholar 

  61. P.G. Bergam and M.K. Nygård (1986). Nonlinear shell analysisi using free formulation finite element. In K.J. Bathe and W. Wunderlich (eds.),Finite Element Method for Nonlinear Problems, Springer, Heidelberg, Germany, 317–337.

    Google Scholar 

  62. P.G. Bergan and T.H. Soreide (1973). A comparative study of different numerical solution techniques as applied to a nonlinear structural problem.Comp. Meths. Appl. Mech. Eng.,2, 185–201.

    Article  MATH  Google Scholar 

  63. M. Bernadou, P.M. Eiroa, and P. Trouvé (1994). On the convergence of a discrete Kirchhoff triangle method valid for shell of arbitrary shape.Comp. Meths. Appl. Mech. Eng.,118, 373–391.

    Article  MATH  Google Scholar 

  64. M. Bernadon, P. Trouvé and Y. Ducatel (1989). Approximation of general shell problems by flat plate elements part 1.Computation Mechanics,5, 175–208.

    Article  Google Scholar 

  65. M. Bernadou and P. Trouvé (1989). Approximation of general shell problems by flat plate elements part 2. addition of drilling degree of freedom.Computation Mechanics,6, 359–378.

    Article  Google Scholar 

  66. M.A. Biot (1965).Mechanics of Incremental Deformation. John Welly and Sons, New York.

    Google Scholar 

  67. J. Bonet and R.D. Wood (1997).Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge (UK).

    MATH  Google Scholar 

  68. A. Bout (1993). A displacement-based geometrically nonlinear constant stress element.Int. J. Num. Meth. Engng.,36, 1161–1188.

    Article  MATH  Google Scholar 

  69. B. Brank, J. Korelc and A. Ibrahimbegovic (2002). Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation.Computers & Structures,80, 699–717.

    Article  Google Scholar 

  70. B. Brank, A. Ibrahimbegovic and S. Mamouri (2000). Finite rotation shell elements for nonlinear static and dynamics analysis. InThe Fourth International Colloquium on Computational of Shell & Spatial Structures, Chania-Crete, Greece.

  71. C. Brebbia and J.J. Connor (1969).Fundamentas of finite element techniques for structural engineers. Butterworths, London.

    Google Scholar 

  72. C. Brebbia and J.J. Connor (1969). Geometrical nonlinear finite element analysis. ProceedingJournal of Engineering Mechanics Division, ASME,95, (EM2), 463–483.

    Google Scholar 

  73. S.C. Brenner and L.R. Scott (2002)The mathematical theory of finite element methods. Springer-Verlag, New York.

    MATH  Google Scholar 

  74. F. Brezzi and M. Fortin (1991).Mixed and hybrid finite element methods. Springer, New York.

    MATH  Google Scholar 

  75. M.L. Bucalem and K.J. Bathe (1993). Higher-order MITC general elements.Int. J. Num. Meth. Engng.,36, 3729–3754.

    Article  MATH  MathSciNet  Google Scholar 

  76. N. Buechter and E. Ramm (1992). Shell theory versus degeneration—a comparison in large rotation finite element analysis.Int. J. for Numerical Methods in Engineering,34, 39–59.

    Article  MATH  Google Scholar 

  77. J.W. Bull (ed.) (1998).Finite element analysis of thin-walled structures. Elsevier, London.

    Google Scholar 

  78. F.A. Carroll (1999).A primer for finite elements in elastic structures. Wiley, New York.

    Google Scholar 

  79. C.R. Calladine (1988). The theory of thin shell structures.Proc. Instn. Mech. Engrs.,20, No. A3, 141–149.

    Google Scholar 

  80. N. Carpenter, H. Stolarski and T. Belytschko (1985). A flat triangular element shell element with improved membrane interpolation.Communications in Applied Numerical Methods,1, 161–168.

    Article  MATH  Google Scholar 

  81. N. Carpenter, H. Stolarski and T. Belytschko (1986). Improvement in 3-node triangular shell element.Int. J. Num. Engng.,23, 1643–1667.

    Article  MATH  Google Scholar 

  82. D. Chapelle and K.J. Bathe (2003).The finite element analysis of shells: fandamentals. Springer, Berlin.

    Google Scholar 

  83. H.C. Chen (1992). Evaluation of Allman triangular membrane element used in general shell analyses.Computers and Structures 43(5), 881–887.

    Article  Google Scholar 

  84. K.K. Chen (1979). A triangular plate finite element for large displacement elastic plastic analysis of automobile structural components.Computers and Structures,10, 203–215.

    Article  Google Scholar 

  85. T.K. Cheung and M.F. Yeo (1979).A practical introduction to finite element analysis. Pitman, London.

    MATH  Google Scholar 

  86. P.G. Ciarlet (1976). Numerical analysis of the finite element method. Series “Séminaire de Mathématiques Supérieures”, Vol.59, Presses de l’University of Montréal, Montréal.

    MATH  Google Scholar 

  87. W.R. Clough and C.J. Johnson (1968). A finite element approximation for the analysis of thin sheels.Int. J. Num. Meth. Engng.,4, 43–60.

    MATH  Google Scholar 

  88. W.R. Clough and C.J. Jonhson (1970). Approximation of general shell problems by flat plate elements. InProc. ACI Symposium on Concrete Thin Shells, 333–363.

  89. R.W. Clough and E.L. Wilson (1971). Dynamic finite element analysis of arbitrary thin shells.Computers & Structures,1, 33–56.

    Article  Google Scholar 

  90. R.D. Cook (1968). On the Allman triangle and a related quadrilateral element.Computers & Structures,22, 1065–1067.

    Article  Google Scholar 

  91. R.D. Cook (1987). A plate hybrid element with rotational d.o.f. and adjustable stiffness.Int. J. Num. Meth. Engng.,24, 1499–1508.

    Article  MATH  Google Scholar 

  92. R.D. Cook (1989).Concepts and Applications of Finite Element Analysis. 3rd edition, John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  93. R.D. Cook (1991). Modified formulation for nine-DOF plane triangles that includes vertex rotations.Int. J. Num. Meth. Engng.,31, 825–835.

    Article  MATH  Google Scholar 

  94. R.D. Cook (1993). Further development of a three-node triangular shell element.Int. J. Num. Meth. Engng.,36, 1413–1425.

    Article  MATH  Google Scholar 

  95. R.D. Cook (1995).Finite Element Modeling for Stress Analysis. John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  96. R.D. Cook, D.S. Malkus, M.E. Plesha and R.J. Witt (2001).Concepts and Applications of Finite Element Analysis. 4th edition, Wiley, New York.

    Google Scholar 

  97. E. Cosserat and F. Cosserat (1909). Theorie des corps deformables. InChwolson, Traite De Physique, Paris, 2nd ed., 953–1173.

  98. M.A. Crisfield (1981) A fast incremental/iterative solution proceedure that handles “snapthrough”.Computers & Structures,13, 55–62.

    Article  MATH  Google Scholar 

  99. M.A. Crisfield (1983). An are length method including line search and acceleration.Int. J. Num. Meth. Engng.,19, 1269–1289.

    Article  MATH  Google Scholar 

  100. M.A. Crisfield (1990). A consistent co-rotational formulation for non-linear three-dimensional, beam elements.Comp. Meth. Appl. Mech. Engng.,81, 131–150.

    Article  MATH  Google Scholar 

  101. M.A. Crisfield (1991).Non-Linear Finite Element Analysis of Solids and Structures, Vol. 1: Essentials. John Wiley & Sons, Chichester.

    Google Scholar 

  102. M.A. Crisfield (1997).Non-Linear Finite Element Analysis of Solids and Structures. Vol. 2: Advanced Topics. John Wiley & Sons, Chichester.

    Google Scholar 

  103. M.A. Crisfield and G. Cole (1989). Co-rotational beam elements for two-and three-dimensional non-linear analysis.Proc. IUTAM/IACM Symp. on Discretization Methods in Structural Mechanics,4, 115–124.

    Google Scholar 

  104. M.A. Crisfield and G.F. Moita (1996). A unified co-rotational framework for solids, shells and beams.Int. J. Solids Structures,33, 2969–2992.

    Article  MATH  Google Scholar 

  105. M.A. Crisfield and Peng, X. (1991). Recent research on co-rotational beam and shell elements.Proceeding of the International Conference on Nonlinear Engineering Computations. p. 71.

  106. M.A. Crisfield and X. Peng (1992). Efficient non-linear shell formulation with large rotations and plasticity.COMPLAS-3, Barcelona, 1979–1997.

  107. M.A. Crisfield, Peng, X. and J. Shi (1994). Recent finite element research on shells and nonlinear analysis.Marine Structure,7, 307–321.

    Article  Google Scholar 

  108. D.J. Dawe (1972). Shell analysis using a simple facet element.J. Strain Analysis,7(4), 266–270.

    Article  Google Scholar 

  109. B.F. De Veubeke (1976). The dynamics of flexible bodies.Int. J. Engrg. Sci.,14, 895–913.

    Article  MATH  Google Scholar 

  110. B.F. De Veubeke (1974). Variational principles and the patch test.Int. J. Engrg. Sci.,8, 783–801.

    MATH  Google Scholar 

  111. Y. DeEskinazi, W. Soedel and T.Y. Yang (1975). Contact and inflated toroidal membrane with a flat surface as an approach to the tire deflection problem.J. Tire Sci Technol, ASME,3, 43–61.

    Article  Google Scholar 

  112. Y. DeEskinazi and T.Y. Yang, (1978). Displacement and stresses due to contact of a steel belted radial tire with a flat surface.J. Tire Sci Technol, ASME,6, 48–70.

    Article  Google Scholar 

  113. C.S. Desai and J.F. Abel (1972).Introduction to the finite element method a numerical for engineering analysis. Van Nostrand Reinhold Company, New York.

    MATH  Google Scholar 

  114. G.S. Dhatt (1970). An efficient triangular shells element.AIAA J.,8(11), 2100–2102.

    Google Scholar 

  115. G.S. Dhatt, L. Marcotte, Y. Matte and M. Talbot (1986). Two new discrete Kirchhoff plate shell elements. InProc. 4th Symp. Numer. Meth. Engng, Atlanta, GA, 599–604.

  116. L.H. Donnell (1934). A new theory for the buckling of thin cylinders under axial compression and bending.Trans. ASME-Aeronautical Div., 795–806.

  117. R. Dungar, R.T. Severn and P.E. Taylor (1967). Vibration of plate and shell structures using triangular finite element.J. Strain Anal.,2, 73–83.

    Article  Google Scholar 

  118. R. Dungar and R.T. Severn (1969). Triangular finite elements of variable thickness and their application of plate and shell problems.J. Strain Anal.,4, 10–21.

    Article  Google Scholar 

  119. E.N. Dvorkin and K.J. Bathe (1984). A continuum mechanics based four-node shell element for general non-linear analysis.Engng. Comp.,1, 77–88.

    Google Scholar 

  120. N. El-Abbasi and S.A. Meguid (2000). A new shell element accounting for through-thickness deformation.Comput. Meth. Appl. Mech. Eng.,189, 841–862.

    Article  MATH  Google Scholar 

  121. J.L. Ericksen C. Truesdell (1958). Exact theory of stress and strain in rods and shells.Archive for Rational Mechanics and Analysis.1(4), 295–323.

    MATH  MathSciNet  Google Scholar 

  122. A. Eriksson and C. Pacoste (2002). Element formulation and numerical techniques for stability problems in shells.Comp. Meth. appl. Mech. Engng.,191, 3775–3810.

    Article  MATH  Google Scholar 

  123. A. Ern (2004).Theory and practice of finite elements. Springer, New York.

    MATH  Google Scholar 

  124. L.J. Ernst (1981). A geometrically nonlinear finite element shell theory.Ph.D. Thesis, TU Delft.

  125. R.M. Evan-Iwanovski, H.M. Cheng and T.C. Loo (1962) Exprimental investigation of deformation and stability of spharical shells subjected to concetrated load at the apex.Proceeding of The Fourth U. S. National Congress of Applied Mechanics, pp. 563–575.

  126. M. Fafard, G. Dhatt, and J.L. Batoz (1989). A new triangular discrete Kirchhoff plate/shell element with updated procedures.Int. J. Num. Meth. Engng.,31, 591–606.

    Google Scholar 

  127. C.A. Felippa (1966). Refined finite element analysis of linear and nonlinear two-dimensional structures. Report No. 66-22, Department of Civil Engineering, University of California, Nashville, Tennessee, 255–278.

    Google Scholar 

  128. C.A. Felippa (2003). A study of optimal membrane triangles with drilling freedom.Comp. Meth. Appl. Mech. Engng.,192, 2125–2168.

    Article  MATH  Google Scholar 

  129. C.A. Felippa and S. Alexander (1992). Membrane triangles with corner drilling freedoms. III. Implementation and performance evaluation.Finite Element Anal Des.,12, 203–239.

    Article  MATH  Google Scholar 

  130. C.A. Felippa and P.G. Bergan (1987). A triangular bending element based on an energyorthogonal free formulation.Comp. Meth. Appl. Mech. Engng.,61, 129–160.

    Article  MATH  Google Scholar 

  131. C.A. Felippa and C. Militello (1992). Membrane triangles with corner drilling freedoms. II. The ANDES element.Finite Element Anal. Des.,12, 189–201.

    Article  MATH  Google Scholar 

  132. F. Flores and E. Oñate, E. (1993). New shell elements for nonlinear structural analysis.Research Report, CIMNE, Barcelona.

    Google Scholar 

  133. F. Flores and E. Oñate (1993). A comparison of different finite elements based on Simo’s shell theory. (in Spanish),Research Report, 33, CIMNE, Barcelona.

    Google Scholar 

  134. F. Flores and E. Oñate (1993). Dynamic analysis of shells and robs. (in Spanish),Research Report, 39, CIMNE, Barcelona.

    Google Scholar 

  135. F. Flores, E. Oñate, and F. Zarate (1995). New assumed strain triangles for non linear shell analysis.Computational Mechanics,17, 107–114.

    Article  MATH  MathSciNet  Google Scholar 

  136. Y.C. Flugge (1973).Stresses In Shells, 2nd ed., Springer, Berlin.

    Google Scholar 

  137. B.M. Fraeijs de Veubeke (2001). Displacement and equilibrium model. In O.C. Zienkeiwicz, G. Hollister (Eds.),Stress Analysis, Wiley, London, 1965, pp. 145–197.Int. J. Num. Meth. Engng.,52, 287–342. (Reprinted).

    Google Scholar 

  138. R. Frisch-Fay (1962).Flexible Bars. Butterworths: London.

    MATH  Google Scholar 

  139. W. Fung (1965).Foundation of Solid Mechanics. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  140. J.E. Gal (2002). Triangular shell element for geometrically nonlinear analysis.Ph.D. Thesis, Faculty of Civil Engineering, Technion-I.I.T., Israel, (in Hebrew).

    Google Scholar 

  141. R.H. Gallagher (1973). The finite element method in shell stability analysis.Computers & Structures,3, 543–557.

    Article  Google Scholar 

  142. R.H. Gallagher (1974). Finite element representations for thin shell instability analysis. InBuckling of Structures, (Edited by Budiansky), IUTAM Symposium, Cambridge, MA.

  143. R.H. Gallagher (1975).Finite element analysis: Fundamentals, Prentice-Hall, New Jersey.

    Google Scholar 

  144. R.H. Gallagher (1977). Geometrically nonlinear shell analysis. InProc. International Conference in nonlinear Solid and Structures Mechanics, Norway.

  145. R.H. Gallagher (1989). Thirty years of finite element analysis— are there issue yet to be resolved?Finite Element in Analysis and Design,6, 1–8.

    Article  MATH  Google Scholar 

  146. R.H. Gallagher, R.A. Gellatly, J. Padlog and R.H. Mallett (1967). A discrete element procedure for thin shell analysis.AIAA Journal,5, 138–145.

    Google Scholar 

  147. R.H. Gallagher and J. Padlog (1963). Discrete element approach to structural stability analysis.AIAA Journal,1(6), 1437–1439.

    Google Scholar 

  148. R.H. Gallagher and T.Y. Yang (1969). Elastic instability predictions for doubly curved shells. InProc. Second Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air force Base, Dayton, OH.

  149. H. Goldstein (1950).Classical Mechanics, Addison-Wesley, Tokyo.

    Google Scholar 

  150. C.S. Gran and T.Y. Yang (1978). NASTRAN and SAP IV applications of the seismic response of column-supported cooling towers.Computers and Structures,8, 761–768.

    Article  Google Scholar 

  151. C.S. Gran and T.Y. Yang (1980). Refined analysis of the seismic response of column-supported cooling towers.Computers and Structures,11, 225–231.

    Article  MATH  Google Scholar 

  152. H. Garnet and A. Pifko (1983). An efficient triangularplate bending finite element for crash simulation.Computers and Structures,16, 371–379.

    Article  MATH  Google Scholar 

  153. A.E. Green, R.J. Knops and N. Laws (1968). Large deformation, superimposed small deformations, and stability of elastic robs.Int. Journal of Solids and Structures,4, 555–557.

    Article  MATH  Google Scholar 

  154. B.E. Greene, D.R. Strome and R.C. Weikel (1961). Application of stiffness method to the analysis of shell structures. InProc. Aviation Conference of ASME, Los Angeles, CA.

  155. J.M. Greer and A.N. Palazotto (1997). Nonlinear finite element analysis of isotropic and composite shells by the total lagrangian decomposition scheme.Mech. Comp. Mater. Struct.,3, 241–271.

    Article  Google Scholar 

  156. D.C. Hammerand and R.K. Kapania (2000). Geometrically nonlinear shell element for hygrothermorheologically simple linear viscoelastic composites.AIAA Journal,38(12), 2305–2319.

    Google Scholar 

  157. J.C. Harris and P. Bartholomew (1989). Cubic triangular membrane element with drilling rotation freedom.RAE Technical Report 89042.

  158. B.J. Hartz (1965). Matrix formulation of structural stability problems.Proceeding Journal of Engineering Structural Division, ASCE, 91, (ST6), Proc. Paper 4572.

  159. C. Hausser and E. Ramm (1996). Efficient three-node shear deformable plate/shell elements-an almost hopeless undertaking. In Topping BHV, editor.Advances in Finite Element Technology. Edinburgh, Civil-Comp Press, 203–215.

    Google Scholar 

  160. L.R. Herrmann (1967). Finite element bending analysis of plates.J. Eng. Mech. Div. ASCE,93(EM5), 13–25.

    Google Scholar 

  161. L.R. Herrmann and D.M. Campbell (1968). A finite element analysis of thin shell.AIAA J.,6, 1842–1846S.

    MATH  Google Scholar 

  162. E. Hinton and D.R.J. Owen (1977).Finite element programming. Academic Press, London.

    Google Scholar 

  163. P.T.S. Ho (1992). A coparison of performance of a flat faceted shell element and a degenerated superparametric shell element.Computers and Structures,44(4), 895–904.

    Article  Google Scholar 

  164. I. Holand and K. Bell (eds) (1972).Finite element methods in stress analysis. Tapir Forlag, Norway.

    Google Scholar 

  165. G. Horrigmoe and P.G. Bergan (1978) Nonlinear analysis of free-form shells by flat finite elements.Comp. Meth. Appl. Mech. Engng.,16, 11–35.

    Article  MATH  Google Scholar 

  166. G. Horrigmoe (1976). Large displacement analysis of shells by hybrid stress finite element method.IASS World Congress on Space Enclosures, Montreal, 489–499.

  167. G. Horrigmoe (1976). Nonlinear finite element models in solid mechanics. Dr. Ing.Thesis-Part 1, Div. Struct. Mech., Norwegian Ins. Tech., Trondheim, Report No. 76-2, Aug.

  168. G. Horrigmoe (1977). Finite element instability analysis of free-form shells. Dr. ing.Thesis-Part 2, Div. Struct. Mech., Norwegian Ins. Tech., Trondheim, Report No. 77-2, May.

  169. M.M. Hrabok and T.M. Hrudey (1984). A review and catalogue of plate bending finite elements.Computers and Structures,19(3), 479–495.

    Article  Google Scholar 

  170. K.M. Hsiao (1987). Nonlinear analysis of general shell structures by flat triangular shell element.Computers & Structures,25, 665–675.

    Article  MATH  Google Scholar 

  171. K.M. Hsiao and F.Y. Hou (1987). Nonlinear finite element analysis of elastic frames.Computers & Structures,26, 693–701.

    Article  MATH  Google Scholar 

  172. K.M. Hsiao and H.C. Hung (1989). Large-deflection analysis of shell structure by using corotational total lagrangian formulation.Comp. Meth. Appl. Mech. Engng.,73, 209–225.

    Article  MATH  Google Scholar 

  173. K.H. Huebner and E.A. Thornton (1982).The finite element method for engineers. Wiley, New York.

    MATH  Google Scholar 

  174. T.J.R. Hughes (2000).The finite element method: linear static and dynamic finite element analysis. Dover Publication, Mineola N. Y.

    Google Scholar 

  175. T.J.R. Hughes and F. Brezzi (1989). On drilling degree of freedom.Comp. Meth. Appl. Mech. Engng.,72, 105–121.

    Article  MATH  MathSciNet  Google Scholar 

  176. T.J.R. Hughes and E. Hinton (eds.) (1986). Finite element methods for plate and shell structures.Element Technology, Vol. 1, Pineridge Press International, Swansea.

    Google Scholar 

  177. T.J.R. Hughes and E. Hinton (eds.) (1986). Finite element methods for plate and shell structures.Element Technology, Vol. 2, Pineridge Press International, Swansea.

    Google Scholar 

  178. T.J.R. Hughes and W.K. Lui (1981). Nonlinear finite element analysis of shells. Part I: Three-dimensional shells.Comp. Meth. Appl. Mech. Engng.,26, 331–362.

    Article  MATH  Google Scholar 

  179. T.J.R. Hughes, A. Masud and I. Harary (1995a). Numerical assessment of some membrane elements with drilling degree of freedom.Computers and Structures,55(2), 297–314.

    Article  MATH  MathSciNet  Google Scholar 

  180. T.J.R. Hughes, A. Masud and I. Harary (1995b). Dynamic analysis and drilling degree of freedom.Internat. J. Numer. Engrg.,38(19), 3193–3210.

    Article  MATH  Google Scholar 

  181. A. Abrahimbegovic (1997). Stress resultant geometrically exact shell theory for finite rotations and its finite element implementation.Appl. Mech. Rev.,50(4), 199–226.

    Article  Google Scholar 

  182. A. Ibrahimbegovic (2000). Shell structures undergoing large rotations. InThe Fourth International Colloquium on Computational of Shell & Spatial Structures, Chania-Crete, Greece.

  183. A. Ibrahimbegovic and F. Frey (1994). Stress resultant geometrically nonlinear shell theory with drilling rotations-Part II: Computational aspects.Computer Method in Applied Mechanics and Engineering,118, 285–308.

    Article  MATH  MathSciNet  Google Scholar 

  184. A. Ibrahimbegovic and F. Frey (1994). Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: Linearized kinematics.Int J Num Meth Engng,37, 3659–3683.

    Article  MATH  Google Scholar 

  185. A. Ibrahimbegovic, R.L. Taylor and E.L. Wilson (1990). A robust quadrilateral membrane finite element with drilling degree of freedom.Int. J. Num. Meth. Engng.,30, 445–457.

    Article  MATH  Google Scholar 

  186. A. Ibrahimbegovic and E.L. Wilson (1991). A unified formulation for triangular and quadrilateral flat shell finite element with six nodal degree of freedom.Communications in Applied Numerical Methods,7, 1–9.

    Article  MATH  Google Scholar 

  187. S. Idelsohn (1981). On the use of deep, shallow or flat shell finite elements for the analysis of thin shell structures.Comp. Meth. Appl. Mech. Engng.,26, 321–330.

    Article  MATH  Google Scholar 

  188. B.M. Irons and S. Ahmad (1980).Techniques of finite elements. R. Howood, Chichester (Eng)).

    Google Scholar 

  189. B.M. Irons and A. Razzaquue (1972). Experience with the patch test for convergence of finite elements. R. Horwood, Chichester (Eng),Proc. Symp. On the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, (Edited by A. K. Aziz), Baltimore, Academic Press, New York, 557–587.

    Google Scholar 

  190. M. Iura and Y. Suetake (2003). Accuracy of co-rotational formulation for 3-D Timoshenko’s beam.Computer Modeling in Engineering and Sciences. 4, 249–258.

    MATH  Google Scholar 

  191. S. Jaamei (1986). Etude de différentes formulations lagrangiennes pour l’analyse non linéaire en grands déplacements et grandes rotations.Thèse de Doctorat, Universitè de Technologie de Compiegne.

  192. P. Jetteur and F.A. Frey (1986). A four node marguerre element for nonlinear shell analysis.Eng. Comp.,3, 276–282.

    Google Scholar 

  193. C. Jeyachandrabose and J. Kirkhope (1985). An alternative explicit formulation for the DKT plate-bending element.Int. J. Num. Meth. Engng.,21, 1289–1293.

    Article  MATH  Google Scholar 

  194. L. Jiang, W. Chernuka and N.G. Pegg (1992). A co-rotational, updated lagrangian formulation for geometrically nonlinear finite element.Proc. Int. Conf. Computational Methods in Engineering, A.A.O. Tay and K.Y. Lam (Eds.), World Scientific, Singapore.

    Google Scholar 

  195. L. Jiang, W. Chernuka and N.G. Pegg (1994A). A co-rotational, updated lagrangian formulation for geometrically nonlinear finite element analysis of shell structures.Finite Element in Analysis and Design,18, 129–140.

    Article  Google Scholar 

  196. L. Jiang and W. Chernuka (1994B). A simple four-noded co-rotational shell element for arbitrarily large rotations.Computers and Structures,53(5), 1123–1132.

    Article  MATH  Google Scholar 

  197. R.K. Kapania and P. Mohan (1996). Static, free vibration and thermal analysis of composite plates and shells using a flat triangular shell element.Computational Mechanics,17, 343–357.

    Article  MATH  Google Scholar 

  198. K.K. Kapur and R.J. Hartz (1996). Stability of plate using the finite element method.Proceeding Journal of Engineering Mechanics Division, ASME,92, (EM2).

  199. S.W. Key and Z.E. Beisinger (1970). The analysis of thin shells by the finite element method. InProc. IUTAM Symposium on High Speed Computing of Elastic Structures, Vol. 1, Univ. of Liege, Liege, Belgium.

    Google Scholar 

  200. J.H. Kim and Y.H. Kim (2002). A three-node C0 ANS element for geometrically non-linear structural analysis.Comp. Meth. Appl. Mech. Engng.,191, 4035–4059.

    Article  Google Scholar 

  201. N.F. Knight Jr. (1997). Raasch challenge for shell elements.AIAA Journal,35(2), 375–381.

    MATH  Google Scholar 

  202. W.T. Koiter (1960). A consistent first approximation in the global theory of thin elastic shells. InThe Theory of Thin Elastic Shells, W.T. Koiter (ed.),Proc. IUTAM Symposium, Delft 1959, North Holland Publ., Amsterdam, 12–33.

    Google Scholar 

  203. W.B. Krätzig (1993). Best nonlinear shell theory including transverse shearing and stretching.Comp. Meth. Appl. Mech. Engng.,103, 119–130.

    Article  Google Scholar 

  204. W.B. Krätzig and E. Oñate (Eds.) (1990).Computational mechanics of nonlinear response of shells.Springer, Berlin.

    Google Scholar 

  205. P.S. Lee and K.J. Bathe (2002). On the asymptotic behavior of shell structures and the evaluation in finite element solutions.Int. J. Num. Method Engng.,80, 235–255.

    Google Scholar 

  206. P.S. Lee and K.J. Bathe (2005). Insight into finite element shell discretizations by use of the “basic shell mathematical model”.Computers and Structures,83, 69–90.

    Article  Google Scholar 

  207. R. Leicester (1966). Large elastic deformations and snap-through of shallow doubly curved shells.Ph.D. Thesis, Department of Civil Engineering, University of Illinois.

  208. R.H. Leicester (1968). Finite deformations of shallow shells.Proc. ASCE,94(EM6), 1409–1423.

    Google Scholar 

  209. R. Levy, C.S. Chen, C.W. Lin and Y.B. Yang (2004). Geometric stiffness of membranes using symbolic algebra.Engineering Structures,26, 759–767.

    Article  Google Scholar 

  210. R. Levy and E. Gal (2001). Geometrically Nonlinear three-noded flat triangular shell elements.Computers and Structures,79, 2349–2355.

    Article  Google Scholar 

  211. R. Levy and E. Gal (2003). Triangular shell element for large rotations analysis.AIAA Journal.41(12), 2505–2508.

    Google Scholar 

  212. R. Levy, C.W. Lin, E. Gal and Y.B. Yang (2003). Geometric stiffness of space frames using symbolic algebra.International Journal of Structural Stability and Dynamics,3(3), 335–353.

    Article  Google Scholar 

  213. R. Levy and W. R. Spillers (2003).Analysis of Geometrically Nonlinear Structures. 2nd edition, Kluwer Academic Publishers, Dordtrecht.

    Google Scholar 

  214. S. Levy (1942). Bending of rectangular plates with large deflections.Tech. Notes, NACA, No. 846.

  215. G.R. Liu and S.S. Quek (2003).The finite element method: A practical course. Butterworth-Heinmann, Oxford, Boston.

    MATH  Google Scholar 

  216. D.L. Logan (2002).A first course in the finite element method, Brooks/Cole, Pacific Grove, CA.

    Google Scholar 

  217. A.E.H. Love (1944).A treatise on the mathematical theory of elasticity. 4th ed., Dover, N.Y.

    MATH  Google Scholar 

  218. R.H. MacNeal (1997). Perspective on finite elements for shell analysis.AIAA, Paper 97-1139, 2104–2113.

  219. R.H. MacNeal and R.L. Harder (1985). A proposed standard set of problems to test finite element accuracy.Finite Elements in Analysis and Design,1, 3–20.

    Article  Google Scholar 

  220. R.H. MacNeal and R.L. Harder (1988). A refined four-noded membrane element with rotational degree of freedom.Computers & Structures,28, 75–84.

    Article  MATH  Google Scholar 

  221. E. Madenci and A. Barut (1994a). A free formulation flat shell element for non-linear analysis of thin composite structures.Int. J. Num. Method Engng.,37, 3825–3842.

    Article  MATH  Google Scholar 

  222. E. Madenci and A. Barut (1994b). Pre- and post-buckling response of curved, thin, composite panels with cutouts under compression.Int. J. Num. Method Engng.,37, 1499–1510.

    Article  Google Scholar 

  223. H.C. Martin (1965). On the derivation of stiffness matrices for the analysis of large deformations and stability problems.Proc. Conf. Matrix Meth. Struc. Mech., Air Force Institute of Technology, Wright-Patterson A.F.B. Ohio, 697–716.

  224. H.C. Martin and G.F. Carey (1973).Introduction to finite element analysis: Theory and application. McGraw-Hill, New York.

    MATH  Google Scholar 

  225. C.E. Martinez, Y. Urthaler and R. Goncalves (1999). Nonlinear finite element analysis of submarine pipelines during intallation.Proceeding of the ASME pressure vessels and piping conference,385, 187–194.

    Google Scholar 

  226. A. Masud and C.L. Tham (2000). Three-dimensional corotational framework for elasto-plastic analysis of multilayered composite shells.AIAA Journal,38(12), 2320–2327.

    Google Scholar 

  227. A. Masud, C.L. Tham and W.K. Lui (2000). A 3D co-rotational formulation for geometrically nonlinear analysis of multi-layered composite shells.Computational Mechanics 26(1), 1–12.

    Article  MATH  Google Scholar 

  228. K. Mattiasson, A. Bengtsson and A. Samuelsson (1986). On the accuracy and efficiency of numerical algorithm for geometrically nonlinear structural analysis. In K.J. Bathe and W. Wunderlich (Eds.),Finite Element Method for Nonlinear Problems, Springer, Heidelberg, Germany, 3–23.

    Google Scholar 

  229. S.T. Mau, T.H.H. Pian and P. Tong (1973). Vibration analysis of laminated plates and shells by hybrid stress element.AIAA J.,11, 1450–1452.

    Google Scholar 

  230. J.L. Meek (2000). Nonlinear large displacement analysis of three dimensional structures-frames and shells.Proceeding IASS-IACM, Fourth International Colloquium on Computation of Shell & Spatial Structures, June 5–7, Chania, Crete, Greece.

  231. J.L. Meek (2000). Structural mechanics and the natural mode method. A paper in honor of professor John H. Argyris; the John Argyris contribution: Veni vidi vici.Proceeding IASS-IACM, Fourth International Colloquium on Computation of Shell & Spatial Structures, June 5–7, Chania, Crete, Greece.

  232. J.L. Meek and H.S. Tan (1986). A faceted shell element with loof nodes.Int. J. Num. Meth. Engng.,23, 49–67.

    Article  MATH  Google Scholar 

  233. J.L. Meek and H.S. Tan (1985). A discrete Kirchhoff plate bending element with loof nodes.Computers & Structures,21, 1197–1212.

    Article  Google Scholar 

  234. J.L. Meek and H.S. Tan (1986). Instability analysis of thin plates and arbitrary shells using faceted shell element with loof nodes.Comp. Meth. Appl. Mech. Engng.,57, 143–170.

    Article  MATH  Google Scholar 

  235. J.L. Meek and S. Ristic (1997). Large displacement analysis of thin plates and shells using a flat facet finite element formulation.Comp. Meth. Appl. Mech. Engng.,145, 285–299.

    Article  MATH  Google Scholar 

  236. J.L. Meek and Y. Wang (1998). Nonlinear static and dynamic analysis of shell structures with finite rotation.Comp. Meth. Appl. Mech. Engng.,162, 301–315.

    Article  MATH  Google Scholar 

  237. J.F. Mescall (1965). Large deflections of spherical shells under concentrated loads.ASME Applied Mechanics Division, 936–938.

  238. J.F. Mescall (1966). Numerical solution of nonlinear equations of shell of revolution.AIAA J.,4(11), 2041–2042.

    MATH  Google Scholar 

  239. R.V. Milford and W.C. Schnobrich (1986). Degenerate isoparametric finite elements using explicit integration.Int. J. Num. Meth. Engng.,23, 133–154.

    Article  MATH  MathSciNet  Google Scholar 

  240. A.K. Mohammed, B. Skallerud and J. Amdahl (2001). Simplified stress resultant plasticity on a geometrically nonlinear constant stress shell element.Computers and Structures,79, 1723–1734.

    Article  Google Scholar 

  241. P. Mohan and R.K. Kapania (1997). Geometrically nonlinear analysis of composite plates and shells using a flat triangular shell element.38th AAIA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Kissimmee, FL, Paper 97-1233, 2347–2361.

  242. R.J. Melosh (1965). A flat triangular shell element stiffness matrix.Proc. of the Conference on Matrix Methods in Structural Eng., Wright-Patterson Air Force Base, 503–514.

  243. L.S.D. Morley (1971). On the constant-moment plate bending element.Journal of Strain Analysis,6, 20–24.

    Article  Google Scholar 

  244. L.S.D. Morley (1984). A facet-like shell theory.Internat. J. Numer. Engng.,22(11/12), 1315–1327.

    MATH  Google Scholar 

  245. L.S.D. Morley and M.P. Mould (1987). The role of bending in the finite element analysis of thin shells.Finite Elements in Analysis and Design,3, 213–240.

    Article  MATH  Google Scholar 

  246. L.S.D. Morley (1991). Geometrically nonlinear constant moment triangle which passes the von Kármán patch test.Inter. J. Numer. Engrg.,31, 241–263.

    Article  MATH  Google Scholar 

  247. S.K. Naboulsi and A.N. Palazotto (2003). Non-linear static-dynamic finite element formulation for comoposite shells.International Journal of Non-Linear Mechanics,38, 87–110.

    Article  MATH  Google Scholar 

  248. P.M. Naghdi (1972). The theory of shells and plates, mechanics of solids II. In Truesdel, C. (Ed.), Vol. Via/2, 425–640:Encyclopedia of Physics, Flügge, S. (Ed.), Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  249. J.C. Nagtegaal and J.G. Slater (1981). A simple non-compatible thin sheell element based on discrete Kirchhoff theory. InNonlinear Finite Element Analysis of plates and Shells, J.R. Hughes, A Pifco and A. Jay (Eds.),ASME AMD, 48, 167–192.

  250. B. Noble (1969).Applied Linear Algebra. Prentice-Hall, New Jersey.

    MATH  Google Scholar 

  251. A.K. Noor (1990). Bibliography of monographs and surveys on shells.Applied Mechanics Review,43, 199–229.

    Google Scholar 

  252. A.K. Noor, T. Belyschko and J.K. Simo (Eds.) (1989). Analytical and Computational Models of Shells.CED-Vol3,ASME, New York.

    Google Scholar 

  253. A.K. Noor and H.G. McConb Jr. (Eds.) (1978).Trend in computerized structural analysis and synthesis. Pergamon press, New York.

    Google Scholar 

  254. D.H. Noori and G. de Vries (1973).The finite element method: Fundamentals and applications. Academic Press, New York.

    Google Scholar 

  255. B. Noor-Omid and C.C. Rankin (1991). Finite rotation analysis and consistent linerization using projectors.Comp. Meth. Appl. Mech. Engng.,93, 353–384.

    Article  Google Scholar 

  256. M.K. Nygård (1986). The free formulation for nonlinear finite elements with applications to shells.Ph.D. Thesis, Division of Structural Mechanics, NTH, Trondheim, Norway.

    Google Scholar 

  257. M.K. Nygård and P.G. Bergan (1989). Advances in treating large rotations for nonlinear problems.State of the Art Survey on Computational Mechanics, A.K. Noor and J.T. Oden (Eds.), American Society of Mechanical Engineering, New York, 305–333.

    Google Scholar 

  258. J.T. Oden (1972).Finite elements of nonlinear continua. McGraw-Hill, New York.

    MATH  Google Scholar 

  259. J.T. Oden and J.N. Reddy (1976).An introduction to the mathematical theory of Finite elements. Wiley, New York.

    MATH  Google Scholar 

  260. J.T. Oden (1967). Numerical formulation of non-linear elasticity problems.Proceedings Journal of Engineering Structural Division, ASCE, 93, (ST3), Proc. Paper 5290.

  261. J.T. Oden (1966). Calculation of geometric stiffness matrices for complex structures.AIAA J.,4(8), 1480–1482.

    MATH  Google Scholar 

  262. J. Oliver and E. Oñate (1984). A total lagrangian formulation for the geometrically nonlinear analysis of structures using finite element. Part I. two-dimensional problems: shell and plate structures.International Journal for Numerical Methods in Engineering,20, 2253–2281.

    Article  MATH  Google Scholar 

  263. M.D. Olson and T.W. Bearden (1979). A simple flat triangular shell element revisited.International Journal for Numerical Methods in Engineering,14, 51–68.

    Article  MATH  Google Scholar 

  264. E. Oñate, M. Cervera and F. Zarate (1995) A three node triangular shell element with translational degrees of freedom.Research Report CIMNE, Barcelona.

    Google Scholar 

  265. E. Oñate, E. Hinton and N. Glover (1978). Techniques for improving the performance of Ahmad shell elements. C/R/313/78, Department of Civil Engineering, University of Wales, Swansea.

    Google Scholar 

  266. E. Oñate, J. Pariaux and A. Samuelsson (eds.), (1991).The finite element method in the 1990’s. A book dedicated to O.C. Zienkiewicz. CIMNE, Spain.

    MATH  Google Scholar 

  267. E. Oñate, J. Rejek and C.G. Garino (1995). NUMISTAMP: A research for assessment of finite-element models for stamping processes.Journal of Materials Processing Technology,50, 17–38.

    Article  Google Scholar 

  268. E. Oñate, F. Zárate (2000). Rotation-free triangular plate and shell elements.International Journal for Numerical Methods in Engineering,47, 557–603.

    Article  MATH  MathSciNet  Google Scholar 

  269. E. Oñate, F. Zárate and F. Flores (1994). A simple triangular element for thick and thin plate and shell analysis.International Journal for Numerical Methods in Engineering,37, 2569–2582.

    Article  MATH  Google Scholar 

  270. S. Oral and A. Barut (1991). A shear-flexible facet shell element for large deflection and instability analysis.Comp. Meth. Appl. Mech. Engng.,93, 415–431.

    Article  MATH  Google Scholar 

  271. C. Oran (1973). Tangent stiffness in space frames.J. Eng. Mech. Div. ASCE,99, 987–1001.

    Google Scholar 

  272. C. Oran and A. Kassimali (1997). Large deformations of frames structures under static and dynamic loads,Comp. Struc.,6, 539–547.

    Article  Google Scholar 

  273. D.R.J. Owen and E. Hinton (1980).Finite element in plasticity: theory and practice. Pineridge Press Limited, Swansea; U.K..

    Google Scholar 

  274. C. Pacoste (1998). Co-rotational flat facet triangular elements for shell instability analyses.Comp. Meth. Appl. Mech. Engng.,156, 75–110.

    Article  MATH  Google Scholar 

  275. P.F. Pai and M.J. Schulz (2000). Modeling of highly flexible structures.J. Spacecraft,37 (3), 419–421.

    Google Scholar 

  276. P.F. Pai and A.N. Palazotto (1995). Nonlinear displacement-based finite-element analysis of composite shells-a new total Lagrangian formulation.Int. J. Solids Structures,32 (20), 3047–3073.

    Article  MATH  Google Scholar 

  277. S.W. Papenfuss (1959). Lateral plate deflection by stiffness matrix methods with application to a Marquee.M.S. Thesis, Department of Civil Engineering, University of Washington, Seattle.

    Google Scholar 

  278. H. Parisch (1978). Geometrical nonlinear analysis of shells.Comp. Meth. Appl. Mech. Engrg.,14, 159–178.

    Article  MATH  Google Scholar 

  279. H. Parisch (1981). Large displacements of shells including material nonlinearities.Comp. Meth. Appl. Mech. Engng.,27, 183–214.

    Article  MATH  Google Scholar 

  280. X. Peng and M.A. Crisfield (1992). A consistent co-rotational formulation for shell using the constant stress/constant moment triangle.Int. J. Num. Meth. Engng.,35, 1829–1847.

    Article  MATH  Google Scholar 

  281. A. Pica and R.D. Wood (1980). Post buckling behavior of thin plates and shells using mindlin shallow shell formulation.Computers and Structures,12, 759–768.

    Article  MATH  MathSciNet  Google Scholar 

  282. A. Pica, R.D. Wood and E. Hinton (1980). Finite element analysis of geometrically nonlinear plate behavior using a Mindlin formulation.Computers and Structures,11, 203–215.

    Article  MATH  MathSciNet  Google Scholar 

  283. W. Pietraszkiewicz (1977).Introduction to the nonlinear theory of shells. Mitteilungen aus dem institute für Mechanik, Ruhr Universität, Bochum.

    Google Scholar 

  284. W. Pietraszkiewicz (1984). Lagrangian description and incremental formulation in the nonlinear theory of thin shells.Int. J. Nonlin. Mech.,19, 115–140.

    Article  MATH  Google Scholar 

  285. W. Pietraszkiewicz and J. Badur (1983). Finite rotations in the description of continuum deformation.Int. J. Engrg. Sci.,21 (9), 1097–1115.

    Article  MATH  MathSciNet  Google Scholar 

  286. R. Piltner and R. L. Taylor (2000). Triangular finite elements with rotational degree of freedom and enhanced strain modes.Computers and Structures,75, 361–368.

    Article  Google Scholar 

  287. P.N. Poulsen and L. Damkilde (1996). A flat triangular shell element with loof nodes.Int. J. Num. Meth. Engng.,39, 3867–3887.

    Article  MATH  Google Scholar 

  288. E. Providas and M.A. Kattis (2000). An assessment of two fundamental flat triangular shell elements with drilling rotations.Computers and Structures,77, 129–139.

    Article  Google Scholar 

  289. E. Providas and M.A. Kattis (1999). A simple finite element model for the geometrically nonlinear analysis of thin shells.Computational Mechanics J.,24, 127–137.

    Article  MATH  Google Scholar 

  290. S.S. Rao (1989).The finite element in engineering. Pergamon, Oxford (UK).

    MATH  Google Scholar 

  291. E. Ramm (1977). A plate/shell element for large deflection and rotations. In Bathe, K.J., Oden, J.T., and Wunderlich, W., (Eds.),Formulations and Computational Algorithms in Finite Element Analysis, M.I.T. Press, Cambridge, MA.

    Google Scholar 

  292. C.C. Rankin (1998). On choise of best possible corotational element frame. InModeling and simulation Based Engineering, Atluri S.N., O’Donoghue P.E. (Eds.). Vol. 1, Tech Science Press: Forsyth, GA, 772–777.

    Google Scholar 

  293. C.C. Rankin and F.A. Brogan (1986). An element independent corotational procedure for the treatment of large rotations.Journal of Pressure Vessel Technology,108, 165–174.

    Article  Google Scholar 

  294. C.C. Rankin and B. Noor-Omid (1988). The use of projectors to improve finite element performance.Computers and Structures,30, 257–267.

    Article  MATH  Google Scholar 

  295. J.N. Reddy (1993).An introduction to the finite element method. McGraw-Hill, New York.

    Google Scholar 

  296. J.N. Reddy (2004).An introduction to nonlinear finite element Analysis. Oxford University press.

  297. E. Reissner (1946). Stresses and small displacements of shallow spherical shells.Journal of Mathematics and Physics,25, 80–85, 279–300.

    MATH  MathSciNet  Google Scholar 

  298. E. Reissner (1950). On axisymmetric deformation of thin shells of revolution.Proc. Symp. in Appl. Math.,3, 32.

    Google Scholar 

  299. J. Rejek, J. Jovicevic and E. Oñate (1996). Industrial applications of sheet stamping simulation using new finite-element models.Journal of Materials Processing Technology,60, 243–247.

    Article  Google Scholar 

  300. E. Riks (1979). An incremental approach to the solution of snapping and buckling problems.Int. J. Solids Structures,15, 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  301. J. Robinson (1973).Integrated Theory of finite element methods. J. Wiley, London.

    MATH  Google Scholar 

  302. O. Rodrigues (1840). Des lois géométriques qui régissent les deplacements d’un systéme solide dans l’espace et de la variation des coordinnées provenant de ces déplacements considéres indépendment des causes qui peuvent les produire les produire.J. Math. Pures. Appl.,5, 380–440.

    Google Scholar 

  303. A.B. Sabir (1985). A rectangular and a triangular plane elasticity element with drilling degree of freedom. InProc. 2nd Int. Conf. on Variational Methods in Engineering, Springer-Verlag, Berlin, 17–25.

  304. A.B. Sabir and M.S. Djoudi (1995). Shallow shell finite element for the large deflection geometrically nonlinear analysis of shells and plates.Thin Wall Structures,21, 253–267.

    Article  Google Scholar 

  305. A.B. Sabir and A.C. Lock (1973). The application of finite elements to the large deflection geometrically nonlinear behavior of cylin drical shells.Variational Methods in Engineering, C.A. Brebia and H. Tottenham (Eds.), Southampton Univ. press, Southampton, 7/66–7/75.

    Google Scholar 

  306. A. Samanta and M. Mukhopadhyay (1999). Finite element large deflection static analysis of shallow and deep stiffened shells.Finite Elementsin Analysis and Design,33, 187–208.

    Article  MATH  Google Scholar 

  307. G. Sander and P. Becker (1975). Delinquent finite Elements for Shell idealization. InProc. World Congress on Finite Element Method in Structural Mechanics, Vol. 2, Bournemouth, U.K.

  308. J.L. Sanders (1959). An improved first-approximation theory for thin shells.NASA Tech. Report R-24.

  309. J.L. Sanders (1963). Nonlinear theories for thin shells.Quarterly of Applied Mathematics,21, 21–36.

    MathSciNet  Google Scholar 

  310. H. Schoop (1989). A simple nonlinear flat element for large displacement structures.Computers and Structures,32(2), 379–385.

    Article  MATH  Google Scholar 

  311. H. Schoop (1986A). Oberflächennorientierte endlicher Verdchiebungen,”Ing. Arch.,56, 427–437.

    Article  MATH  Google Scholar 

  312. H. Schoop (1986B). Postbuckling and snap through of thin elastic shells with a double surface theory. InPostbuckling of Elastic Structures, J. Szabó (Ed.), 321–337, Elsevier, Amsterdam.

    Google Scholar 

  313. A.C. Scordelis and K.S. Lo (1964). Computer analysis of cylindrical shells.Journal of The American Concrete Institute, 539–560.

  314. L.J. Segerlind (1984).Applied finite element analysis. Wiley, New York.

    Google Scholar 

  315. J.C. Simo and D.D. Fox (1989A). On a stress resultant geometrically exact shell model. Part I: formulation and optimal parameterization.Computer Method, in Applied Mechanics and Engineering,72, 267–304.

    Article  MATH  MathSciNet  Google Scholar 

  316. J.C. Simo and D.D. Fox (1989B). On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects.Computer Method in Applied Mechanics and Engineering,73, 53–92.

    Article  MATH  MathSciNet  Google Scholar 

  317. J.C. Simo, D.D. Fox and M.S. Rifai (1990a). On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory.Computer Method in Applied Mechanics and Engineering,79, 21–70.

    Article  MATH  MathSciNet  Google Scholar 

  318. J.C. Simo, M.S. Rifai and D.D. Fox (1990b). On a stress resultant geometrically exact shell model. Part IV: variable thickness shells with through the thickness stretching.Computer Method in Applied Mechanics and Engineering,81, 91–126.

    Article  MATH  MathSciNet  Google Scholar 

  319. J.C. Simo and J.G. Kennedy (1992). On a stress resultant geometrically exact shell model. Part V: nonlinear plasticity: formulation and integration algorithms.Computer Method in Applied Mechanics and Engineering,96, 133–171.

    Article  MATH  MathSciNet  Google Scholar 

  320. W.R. Spillers, A. Saadeghvaziri and A. Luke (1993). An example of three-dimensional frame buckling.Computers and Structures,47, 483–486.

    Article  Google Scholar 

  321. H. Stolarsky and T. Belytschko (1983). Shear and membrane locking in curved c0 elements.Computer Method in Applied Mechanics and Engineering,41, 279–296.

    Article  Google Scholar 

  322. G. Strang (1972). Variational crimes in the finite element method. R. Horwood, Chichester (Eng).Proc. Symp. On the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz (Ed.), Baltimore, Academic Press, New York, 689–710.

    Google Scholar 

  323. G. Strang and G.J. Fix (1973).An analysis of the finite element method. Prentice-Hall, New Jersey.

    MATH  Google Scholar 

  324. J.A. Stricklin, W. Haisler, P. Tisdale and R. Gunderson (1969). A rapidly converging triangular plate element.AIAA J.,7(1), 180–181.

    Article  MATH  Google Scholar 

  325. J.A. Stricklin and J.E. Martinez (1969). Dynamic buckling of clamped spherical caps under step pressure loading.AIAA Journal,7, 1212–1213.

    Google Scholar 

  326. K.S. Surana (1983). Geometrically nonlinear formulations for the curved shell elements.Int. J. Num. Meth. Engng.,19, 353–386.

    Article  Google Scholar 

  327. B. Szabo and I. Babuska (1991).Finite element analysis. Wiley, New York.

    MATH  Google Scholar 

  328. L.A. Taber (1982). Large deflection of a fluid-filled shell under a point load.J. Appl. Mech.,49, 121–128.

    Article  MATH  Google Scholar 

  329. M. Talbot (1986). Comparaison de deux élément de coques triangulires plants utilisant une formulation lagrangiennes actualisée.Master Thesis, Civil Engineering Department, Laval University, Quebec.

    Google Scholar 

  330. R.T. Taylor and J.C. Simo (1985). Bending and membrane elements for analysis of thick and thin shells.NUMETA 85 Numerical Methods in Engineering: Theory and Applications, Pande G.N. and Middelton J. (Eds.), Rotterdam, 587–591.

  331. A. Tessler and T.J.R. Hughes (1985). A three-node Mindlin plate element with improved transverse shear.Comp. Meth. Appl. Mech. Engng.,50, 71–101.

    Article  MATH  Google Scholar 

  332. G.A. Thurston (1961). A numerical solution of nonlinear equations of axisymmetrical bending of shallow spherical shells.Journal of Applied Mechanics, ASME,83, 557–568.

    MathSciNet  Google Scholar 

  333. G.A. Thurston (1969). Continuation of Newton’s method through bifurcation points.Journal of Applied Mechanics,ASME, 425–430.

    Google Scholar 

  334. H.S. Tsien (1942). A theory for the buckling of thin shells.J. Aeronautical Sciences,9, 373–384.

    MathSciNet  Google Scholar 

  335. M.J. Turner, R.W. Clough, H.C. Martin and L.J. Topp (1956). Stiffness and deflection analysis of complex structures.J. Aeronaut. Sci.,23, 805–824.

    Google Scholar 

  336. S. Utku and R.J. Melosh (1967). Behavior of triangular shell element stiffness matrices associated with polyhedron deflection distributions.AIAA paper No. 67-114, AIAA 5th Aerospace Sciences Meeting, New York.

  337. T. von Kármán (1910), Festigkeits probleme im maschinebau. InEncyklopadie der Mathematischen Wissenschaften, Vol. IV/4, c, Leipzig, 311–385.

  338. T. von Kármán and H.S. Tsien (1941). The buckling of thin cylindrical shells under axial compression.J. Aeronautical Sciences,8, 302–312.

    Google Scholar 

  339. F. Van Keulen and J. Booij (1996). Refined consistent formulation of a curved triangular finite rotation shell element.Int. J. Num. Meth. Engng.,39, 2803–2820.

    Article  MATH  Google Scholar 

  340. F. Van Keulen, A. Bout and L. Ernst (1993). Nonlinear thin shell analysis using a curved triangular element.Comput. Methods Appl. Mech. Engng.,104, 315–343.

    Google Scholar 

  341. W.W. Wall, M. Gee and E. Ramm (2000). The challenge of a three-dimensional shell formulation-the conditioning problem. TheFourth International Colloquium on Computational of Shell and Spatial Structures, Chania-Crete, Greece.

  342. L. Wang and G. Thierauf (1999). Finite rotations in non-linear analysis and design of elastic shells. TheFifth International Conference on Computational Structures Technology, Oxford, U.K., 223–232.

  343. L. Wang and G. Thierauf (2001). Finite rotations in non-linear analysis of elastic shells.Computers and Structures,79, 2357–2367.

    Article  Google Scholar 

  344. Jr. W. Weaver and P.C. Johnson (1984).Finite element for structural analysis. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  345. G. Wempner (1969). Finite Elements, Finite rotations and small strains of flexible shells.Int. J. Solids Struct.,5, 117–153.

    Article  MATH  Google Scholar 

  346. G. Wempner (1989). Mechanics and finite element of shells.Applied Mechanics Review, ASME,42, 129–142.

    Google Scholar 

  347. J.R. Whiteman (editor) (1973).The mathematics of finite elements and applications. Academic press, New York.

    MATH  Google Scholar 

  348. J.R. Whiteman (editor) (1973).The mathematics of finite elements and applications II. Academic press, New York.

    Google Scholar 

  349. F. Wright (2001).Computing with MAPLE. Chapman & Hall/CRC, Boca Raton.

    Google Scholar 

  350. H.T.Y. Yang (1969). A finite element formulation for stability analysis of doubly curved thin shell structures.P.H.D. Thesis, Cornell University.

  351. H.T.Y. Yang (1975).Finite Element Structural Analysis. Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  352. H.T.Y. Yang, S. Saigal and D.G. Liaw (1990). Advances of thin shell finite elements and some applications-version I.Computers and Structures,35, 481–504.

    Article  MATH  Google Scholar 

  353. H.T.Y. Yang, S. Saigal, A. Masud and R.K. Kapania (2000). A survey of recent shell finite element.Int. J. Num. Meth. Engng.,47, 101–127.

    Article  MATH  MathSciNet  Google Scholar 

  354. Y.B. Yang and J.T. Chang (1998). Derivation of a geometric nonlinear triangular plate element by rigid-body concept. Bulletin ofThe International Association for Shell and Spatial Structures,39, n. 127, 77–84.

    Google Scholar 

  355. Y.B. Yang, J.T. Chang and J.D. Yau (1999). A simple nonlinear analysis plate element and strategies of computation for nonlinear analysis.Comput. Methods Appl. Mech. Engng.,178, 307–321.

    Article  MATH  Google Scholar 

  356. Y.B. Yang and S.R. Kuo (1994).Theory and Analysis of Nonlinear Frame Structures. Prentice Hall, Singapore.

    Google Scholar 

  357. Y.B. Yang and M.S. Shieh (1990). Solution Method for Nonlinear Problems with Multiple Critical Points.AIAA Journal,28, 2110–2116.

    Google Scholar 

  358. Y. Yoshida (1974). A hybrid stress element for thin shell analysis. InProc. International Conference on Finite Element Method in Engineering. Univ. of N.S.W., Australia.

  359. O.C. Zienkiewicz (1977).The finite element method. 3rd edition, McGraw-Hill, New Jersey.

    MATH  Google Scholar 

  360. O.C. Zienkiewicz and Y.K. Cheung (1965). Finite element procedures in the solution of plate and shell problems. InStress Analysis, Zienkiewicz, O.C. and Holister G.S. (Eds.), Ch. 8, John Weley, New York.

    Google Scholar 

  361. O.C. Zienkiewicz and K. Morgan (1983).Finite element and approximation. Wiley, New York.

    Google Scholar 

  362. O.C. Zienkiewicz, C.J. Parikh and I.P. King (1968). Arch Dam Analysis by a Linear Finite Element Shell Solution Program. InProc. Symposium on Arch Dams, I.C.E., London, 19–22.

  363. O.C. Zienkiewicz and R.L. Taylor (1989).The Finite element method Vol. I, IV Edition, McGraw-Hill, New Jersey.

    Google Scholar 

  364. O.C. Zienkiewicz and R.L. Taylor (1991).The Finite element method Vol. II. IV Edition, McGraw-Hill, New Jersey.

    Google Scholar 

  365. O.C. Zienkiewicz and R.L. Taylor (2000).The Finite element method. V Edition, Batterworth Heinemann, Oxford (UK).

    MATH  Google Scholar 

  366. O.C. Zienkiewicz, R.L. Taylor and J.M. Too (1971). Reduced Integration techniques in general analysis of plates and shells.Int. J. Num. Meth. Engng.,3, 275–290.

    Article  MATH  Google Scholar 

  367. O.C. Zienkiewicz, R.L. Taylor, P. Papadopoulos and E. Oñate (1990). Plate bending elements with discrete constrains: new triangular element.Int. J. Num. Meth. Engng.,35, 505–522.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erez Gal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gal, E., Levy, R. Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element. ARCO 13, 331–388 (2006). https://doi.org/10.1007/BF02736397

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736397

Keywords

Navigation