Skip to main content
Log in

Origins, milestones and directions of the finite element method— A personal view

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

The article traces the important steps of the development of the finite element method from its origins in aircraft structural engineering to the present day, where it provides the essential tool for solution of a great variety of problems in engineering and physics. The emphasis and the choice of the “landmarks” stresses the aspects which are general and essentially of mathematical nature applicable to a wide range of situations. For this reason no mention is made of perhaps equally important developments to new application fields such as metal forming, electromagnetics, geomechanics etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1968), “Curved thick shell and membrane elements with particular reference to axi-symmetric problems”, inProc. 2nd conf. on Matrix Methods in Structural Mechanics, Wright-Patterson AF Base, Ohio.

  • Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), “Analysis of thick and thin shell structures by curved elements,Int. J. Num. Meth. Eng., pp. 419–451.

  • Allen, D.N. de G. (1955), “Relaxation Methods,” McGraw-Hill.

  • Argyris, J.H. (1954–55), “Energy Theorems and Structural Analysis,” Butterworth (reprinted fromAircraft Eng.).

  • Argyris, J.H., Fried, I., and Scharpf, D. W. (1968), “The TUBA family of plate elements for the matrix displacement method”Aeronaut. J., Roy Aeronaut. Soc.,72, p. 701–709.

    Google Scholar 

  • Arnold, D.N. and Falk, R.S. (1987), “A uniformly accurate finite element method for Mindlin-Reissner plate”, IMA Preprint Series no. 307, Institute for Mathematics and its Applications University of Minnesota.

  • Atkinson, B., Card, C.C.M., and Irons, B.M. (1970), “Application of the finite element method to creepingflow problems”,Trans. Inst. Chem. Eng.,48, pp. 276–284.

    Google Scholar 

  • Babuška, I. (1971), “The finite element method with Lagrange multipliers”,Num. Math.,20, pp. 179–192.

    Article  Google Scholar 

  • Babuška, I. (1973), “Error bounds for finite element methods”,Num. Math.,16, pp. 322–33.

    Article  Google Scholar 

  • Babuška, I., and Reinboldt, W.C. (1978), “A-posteriori error estimates for the finite element method”,Int. J. Num. Meth.,11, pp. 1597–1615.

    Article  Google Scholar 

  • Babuška, I., and Rheinboldt, W.C. (1979), “Adaptive approaches and reliability estimates in finite element analysis”,Comp. Meth. in Appl. Mech. and Eng.,17/18, pp. 519–540.

    Article  Google Scholar 

  • Babuška, I., Zienkiewicz, O.C., Gago, J.P.de S.R. and de Arantes Oliveira, E.R. (1986), “Accuracy Estimates and Adaptive Refinement in Finite Element”, J. Wiley & Sons.

  • Bazeley, G.P., Cheung, Y.K., Irons, B.M. and Zienkiewicz, O.C. (1965), “Triangular elements in bending—conformingand non-conformingsolutions”,Pro. Conf. Matrix Methods in Structural Mechanics, Air Force Inst. Tech., Wright-Patterson AF Base, Ohio.

  • Beer, G. and Watson, J.O. (1992), “Introduction to finite and boundary element methods for engineers”, Wiley.

  • Bell, K. (1969), “A refined triangular plate bending element”,Int. J. Num. Meth. Eng.,1, pp. 101–122.

    Article  Google Scholar 

  • Belytschko, T., Lu, X.Y., and Gu, L. (1994), “Element free Galerkin methods”,Int. J. Num. Meth. Eng.,37, pp. 229–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Bercovier, M., Pironneau, O., Harbani, Y., and Livne, E. (1982), “Characteristics and finite element methods applied to equations of fluids in: J.R. Whiteman”, Ed.The Mathematics of Finite Elements and Applications,V, pp. 471–478, Academic Press, London.

    Google Scholar 

  • Bergan, P.G., and Hanssen, L. (1977), “A new approach for deriving ‘good’ element stiffness matrices, in: J.R. Whiteman”, Ed.The Mathematics of Finite Elements and Applications, pp. 483–497 Academic Press, London.

    Google Scholar 

  • Bergan, P.G., and Nygard, M.K. (1984), “Finite element with increased freedom in choosing shape functions,”Int. J. Num. Meth. Eng.,20, pp. 643–663.

    Article  MATH  Google Scholar 

  • Bogner, F.K., Fox, R.L. and Schmit, L.A. (1965), “The generation of interelement-compatible stiffness and mass matrices by the use of interpolation formula E”,Proc. Conf. on Matrix Methods in Structural Mechanics, Air Force Institute of Technology, Wright-Patterson AF Base, Ohio.

  • Bosshard, W. (1968), “Ein neues vollverträgliches endliches Element für Plattenbiegung”,Mt. Ass. Bridge Struct. Eng. Bull.,28, p. 27–40.

    Google Scholar 

  • Brauchli, H.J., and Oden, J.T. (1971), “On the calculation of consistent stress distribution in ffinite element applications”,Int. J. Num. Meth. Eng.,3, pp. 317–325.

    Article  MATH  Google Scholar 

  • Brezzi, F. (1974), “On the existance, uniqueness and approximation of saddle point problems arising form lagrangian multipliers”,RAIRO 8-R2, pp. 129

    MathSciNet  Google Scholar 

  • Christie, I., Griffiths, D.F., Mitchell, A.R., and Zienkiewicz, O.C. (1976), “Finite element methods for second order differential equations with significant first derivatives”,Int. J. Num. Meth. Eng.,10, pp. 1389–1396.

    Article  MATH  MathSciNet  Google Scholar 

  • Clough, R.W. (1958), “Structural analysis by means of a matrix algebra program”,Proc. 2nd ASCE Conf. on Electronic Computation, Kansas City, p. 109–132.

  • Clough, R.W. (1960), “The finite element in plane stress analysis”,Proc. 2nd ASCE Conf. on Electronic Computation Pittsburgh, Pa.

  • Clough, R.W. and Adini, A. (1961), “Analysis of plate bending by the finite element method. Report to National Science Foundation USA G.7337

  • Clough, R.W. and Tocher, J.L. (1965), “Finite element stiffness matrices for analysis of plates in bending,Proc. Conf. on Matrix Methods in Structural Mechanics, Air Force Institute of Technology, Wright-Patterson AF Base, Ohio.

  • Clough, R.W. (1965), “The finite element method in structural mechanics, in: O.C. Zienkiewicz and G.S. Holister”, Eds.Stress Analysis Chapter 7, Wiley.

  • Clough, R.W. (1979), “The finite element method after twenty-five years— a personal view”,Engineering Aplications of the finite element method, A.S. Computas, Det Norske Veritas, Hovik, Norway, pp. 1.1–1.34.

    Google Scholar 

  • Courant, R. (1923), “On a convergence principle in claculus of variation (German)”, Kön Gesellschaft der Wissenschaften zu Götingen Wachrichten, Berlin.

    Google Scholar 

  • Courant, R. (1943), “Variational methods for the solution of problems of equilibrium and vibration”,Bull. Am. Math. Soc.,49, pp. 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  • Cowper, G.R., Kosko, E., Lindberg, G.M., and Olson, M.D. (1968), “Formulation of a new triangular plate bending element”,Trans. Canad. Aero-Space Inst.,1, pp. 86–90, 1968.(See alsoNRC Aero report LR514).

    Google Scholar 

  • Crandall, S.H. (1956), “Engineering Analysis”, McGraw-Hill

  • Demkowicz, L., Oden, J.B., and Babuška, I. (1992), “Reliability in computational mechanics,” Special issueComputer Methods in Appl. Mech. and Eng.,101, pp. 1–492.

    Google Scholar 

  • Donea, J. (1984), “A Taylor-Galerkin method for convective transport problems”,Int. J. Num. Meth. Eng.,20, pp. 101–119.

    Article  MATH  Google Scholar 

  • Dvorkin, E.N., and Bathe, K.J. (1984), “A continuum mechanics based four noded shell element for non linear analysis”,Eng. comput,1, pp. 77–88.

    Google Scholar 

  • Ergatoudis, J.G., Irons, B.M., and Zienkiewicz, O.C. (1968), “Curved isoparametric ‘quadrilateral’ elements for finite element analysis”,Int. J. Solids Struct.,4, pp. 31–42.

    Article  MATH  Google Scholar 

  • Ergatoudis, J.G., Irons, B.M. and Zienkiewicz, O.C. (1968), “Three dimensional analysis of arch dams and their foundations”,Symposium on Arch Dams, Inst. Civ. Eng., London.

  • Falkenheimer, K. (1951), “Systematic calculation of the elastic characteristics of hyperstatic systems”,Le Recherche Aeronautique, pp. 17–23.

  • Fletcher, C.A.T. (1984), “Computational Galerkin Methods”, Springer Verlag.

  • Formaggia, L., Peraire, J., and Morgan, K. (1988), “Simulation of state separation using the finite element method”,Appl. Math. Modelling,12, pp. 175–181.

    Article  MATH  Google Scholar 

  • Fortin, M. and Fortin, N. (1982), “Newer and newer elements for incompressible flow”, Chapter 7 ofFinite Elements in Fluids,6 Ed. R.H. Gallagheret al.

  • FengKang (1965), “Difference schemes based on variational principles”, (in chinese),Applied and Computational Mathematics,2, pp. 238–262.

    Google Scholar 

  • Galerkin, B.G. (1915), “Series solution of some problems of elastic equilibrium of rods and plates (Russian)”,Vestn. Inzh. Tech.,19, pp. 897–908.

    Google Scholar 

  • Gallagher, R.H., Padlog, H. and Bijlaard, P.P. (1962), “Stress analysis of heated complex shapes”,ARS Journal, pp. 700–707.

  • Hassan, O., Morgan, K., and Peraire, J. (1989), “An implicit-explicit scheme for compressible viscous high speed flows”,Comp. Meth. Appl. Eng.,76, pp. 245–258.

    Article  MATH  Google Scholar 

  • Herrmann, L.R. (1965), “Elasticity equations for incompressible or nearly incompressible materials by a variational theorem”,J.A.I.A.A.,3, pp. 1896–1900.

    MathSciNet  Google Scholar 

  • Hinton, E., and Campbell, J. (1974), “Local and global smoothing of discontinuous finite element function usinga least squares method”,Int. J. Num. Meth. Eng.,8, pp. 461–480.

    Article  MATH  MathSciNet  Google Scholar 

  • Hrenikoff, A. (1941), “Solution of problems in elasticity by the framework method”,J. Appl. Mech.,A8, pp. 169–175.

    Google Scholar 

  • Huang, E.C., and Hinton, E. (1986), “Elastic, plastic and geometrically non linear analysis of plates and shells usinga new, nine noded element”, P. Berganet al. Eds.,Elastic Elements for Non Linear Problems, pp. 283–297, Springer-Verlag, Berlin.

    Google Scholar 

  • Hughes, T.J.R. and Brooks, A. (1979), “A multi-dimensional upwind scheme with no cross wind diffusion”, T.J.R. Hughes, Ed.Finite Elements for Convection Dominated Flows, AMD 34, ASME.

  • Hunt, G.P., (1956), “The electronic digital computer in Aircraft structural analysis”,Aircraft Engineering,28.

  • Irons, B.M. and Draper, J.K. (1965), “Inadequacy of nodal connections in a stiffness solution for plate bending,J.A.I.A.A.,3, p. 5.

    Google Scholar 

  • Irons, B.M. (1966), “Numerical integration applied to finite element methods”,Conf. Use of Digital Computers in Struct. Eng., Univ. of Newcastle.

  • Irons, B.M. (1966), “Engineering application of numerical integration in stiffness method”,J.A.I.A.A.,14, pp. 2035–2037.

    Google Scholar 

  • Irons, B.M. (1969), “A conforming quartic triangular element for plate bending”,Int. J. Num. Meth. Eng.,1, p. 296–246.

    Google Scholar 

  • Irons, B.M. and Razzaque, A. (1972), “Experence with the patch test for convergence of finite element method”, A.K. Aziz, Ed.Mathematical Foundations of the Finite Element Method, pp. 557–587, Academic Press.

  • Jameson, A. Baker, T.J. and Weatherill, N.P. (1986), “Calculation of inviscid transonic flow over a complete aircraft”,J.A.I.A.A. 24th Aerospace Sci. Meeting, Reno, Nevada, J.A.I.A.A. pp. 86–103.

  • Johnson, C., Nävert, V. and Pitkäranta, J. (1984), “Finite element methods for linear, hyperbolic problems”,Comp. Meth. Appl. Mech. Eng.,45, pp. 285–312.

    Article  MATH  Google Scholar 

  • Kelly, D.W., Nakazawa, S. and Zienkiewicz, O.C. (1980), “A note on anisotropic balancingdissipation in the finite element method approximation to convective diffusion problems”,Int. J. Num. Meth. Eng.,15, pp. 1705–1711.

    Article  MATH  MathSciNet  Google Scholar 

  • Kelly, D.W., Gago, J.P. de S.R., Zienkiewicz, O.C. and Babuška, I. (1987), “A posteriori error analysis and adaptive processes in the finite element method. Part I-Error analysis”, p. 1593–1619, “Part II-Adaptive mesh refinement”, p. 1621–1656,Int. J. Num. Meth. Eng..

  • Langefors, B. (1952), “Analysis of elastic structures by matrix transformation with special regard to semi monocaque structures”,J. Aero Sci.,19, No. 17.

    Google Scholar 

  • Lax, P.D. and Wendroff, B. (1960), “Systems of conservative laws”,Comm. Pure Appl. Math.,13, pp. 217–237.

    Article  MATH  MathSciNet  Google Scholar 

  • Liszka, T. and Orkisz, J. (1980), “The finite difference method at arbitrary irregular grids and its application in applied mechanics”,Comp. Struct.,11 pp. 83–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.K, Adee, J. and Jun, S. (1993), “Reproducingkernel particle methods for elastic and plastic problems”,Advanced Comp. Methods for Material Modelling, Ed. D.J. Bensonet al., AMD 180, pp. 175–190.

  • Löhner, R., Morgan, K. and Zienkiewicz, O.C. (1984), “The solution of non-linear hyperbolic equation systems by the finite element method”,Int. J. Num. Meth. Fluids,4, pp. 1043–1063.

    Article  MATH  Google Scholar 

  • Löhner, R., Morgan, K. and Zienkiewciz, O.C. (1985), “An adaptive finite element procedure for compressible high speed flows”,Comp. Meth. Appl. Mech. Eng.,51, pp. 441–465.

    Article  MATH  Google Scholar 

  • Malkus, D.S. and Hughes, T.J.R. (1978), “Mixed finite element methods in reduced and selective integration techniques: a unifacation of concepts”,Comp. Meth. Appl. Mech. Eng.,15.

  • Martin, H.C. (1968), “Finite element analysis of fluid flows”,Proc. 2nd conf. on Matrix Methods in Structural Mechanics, Wright-Patterson AF Base, Ohio.

  • Massonet, C.E. (1965), “Numerical use of integral procedures”, O.C. Zienkiewicz and G.S. Holister, Eds. Chapter 10, pp. 198–235,Stress Analysis, J. Wiley & Son.

  • McHenry, D. (1943), “A lattice analogy for the solution of plane stress problems”,J. Inst. Civ. Eng.,21, pp. 59–82.

    Google Scholar 

  • Melosh, R.J. (1963), “Structural analysis fo solids”,Proc. Am. Soc. Civ. Eng.,ST4, pp. 205–223.

    Google Scholar 

  • Mindlin, R.D. (1951), “Influenced of rotatory inertia and shear in flexural motions of isotropic elastic plates”,J. Appl. Mech.,18, pp. 31–38.

    MATH  Google Scholar 

  • Mote, C.D. (1971), “Global-local finite element”,Int. J. Num. Meth. Eng.,3, pp. 565–574.

    Article  MATH  MathSciNet  Google Scholar 

  • Nay, R.A. and Utku, S. (1973), “An alternative for the finite element method”, C.A. Brebbia and H. Tottenham, Eds.,Variational Methods in Engineering, Southampton Univ. Press., pp. 3/62–74.

  • Nayak, G.C. and Zienkiewicz, O.C. (1972), “Elasto-plastic stress analysis. Generalization for various constitutive relations includingstrain softening”,Int. J. Num. Meth. Eng.,5, pp. 113–135.

    Article  MATH  Google Scholar 

  • Neyroles, B., Touzot, G., and Villon, P. (1991), “Le methode des elements diffus”,Compt. Rend. Acad. Sci., Paris,313 (II) pp. 293–296.

    Google Scholar 

  • Neyroles, B., Touzot, G., and Villon, P. (1992), “Generalizing the finite element method. Diffuse approximation and diffuse elements”,Comp. Mechanics,10, pp. 3—7—18.

    Google Scholar 

  • Oden, J.T. (1969), “A general theory of finite elements-I: Topological considerations”, pp. 205–221, and II: Applications, pp. 247–260,Int. J. Num. Meth. Eng.,1.

  • Oden, J.T. and Somogyi, D. (1969), “Finite element applications in flfuid dynamics”,Proc. Am. Soc. Civ. Eng.,95, EM4, pp. 821–826.

    Google Scholar 

  • Oden, J.T. and Wellford, L.C. (1972), “Analysis of viscous flow by the finite element method”,JIAA,10, pp. 1590–1599.

    MATH  Google Scholar 

  • Oden, J.T. (1973), “The finite element in fluid mechanics”, J.T. Oden and E.R.A. Oliveira, Eds.Lectures on Finite element Method in Continuum Mechanics, 1970, Lisbon, University of Alabama Press, Huntsville, pp. 151–186.

    Google Scholar 

  • Oden, J.T. Strouboulis, T. and Devloo, P. (1987), “Adaptive finite element methods for high speed compressible flows”,Int. J. Num. Meth. Eng.,7, pp. 1211–1228.

    Google Scholar 

  • Oliveira, E.R. de Arantes. (1977), “The patch test and the general convergence criteria of the finite element method”,Int. J. Solids Struc.,13, pp. 159–178.

    Article  MATH  Google Scholar 

  • Oñate, E., Cervera, M. and Zienkiewicz, O.C. (1994), “A finite volume format for stuctural mechanics”,Int. J. Num. Meth. Eng.,37, pp. 181–201.

    Article  MATH  Google Scholar 

  • Pavlin, V. and Perrone, N. (1979), “Finite difference energy technique for arbitrary meshes applied to linear plate problems”,Int. J. Num. Meth. Eng.,14, pp. 647–664.

    Article  MATH  Google Scholar 

  • Pawsey, S.F. and Clough, R.W. (1971), “Improved numerical integration of thick slab finite elements”,Int. J. Num. Meth. Eng.,3, pp. 575–586.

    Article  MATH  Google Scholar 

  • Peano, A.G. (1976), “Hierarchics of conformingfinite elements for elasticity and plate bending,”Comp. Math. and Applications,2, pp. 3–4.

    Article  Google Scholar 

  • Peraire, J., Vahdati, M., Morgan, K. and Zienkiewicz, O.C. (1987), “Adaptive remeshing for compressible flow computations”,J. Comp. Physics,72, pp. 449–466.

    Article  MATH  Google Scholar 

  • Peraire, J., Morgan, K., Vahdati, M., and Zienkiewicz, O.C. (1988), “Finite element Euler compatations in 3-D”,Int. J. Num. Meth. Eng.,26, pp. 2135–2159.

    Article  MATH  Google Scholar 

  • Pironneau, O. (1982), “On the transport diffusion algorithm and its application to the Navier Stokes equation”,Num. Math.,38, pp. 309–332.

    Article  MATH  MathSciNet  Google Scholar 

  • Prager, W. and Synge, J.L. (1947), “Approximation in elasticity based on the concept of function space”,Q.J. Appl. Math.,5, pp. 241–269.

    MATH  MathSciNet  Google Scholar 

  • Rashid, Y.R. and Rockenhauser, W. (1968), “Pressure vessel analysis by finite element techniques”,Proc. Conf. on Prestressed Concrete Pressure Vessels, Inst. Civ. Eng.

  • Lord Rayleigh (J.W. Strutt) (1870), “On the theory of resonance”,Trans. Roy. Soc. (London),A161, pp. 77–118.

    Google Scholar 

  • Reissner, E. (1945), “The effect of transverse shear deformation on the bending of elastic plates”,J. Appl. Mech.,12, pp. 69–76.

    MathSciNet  Google Scholar 

  • Reissner, E. (1950), “On a variational theorem in elasticity”,J. Math. Phys.,29, pp. 90–95.

    MATH  MathSciNet  Google Scholar 

  • Richardson, L.F. (1910), “The approximate arithmetical solution by finite differences of physical problems”,Trans. Roy. Soc. (London),A210, 307–357.

    Google Scholar 

  • Ritz, W. (1909), “Über einer neue Methode zur Lösunggwissen Variations— Problem der mathematischen Physik”,J. Reine angew. Math.,135, pp. 1–61.

    Google Scholar 

  • Southwell, R.V. (1940), “Relaxation methods in Engineering Science”, Oxford, University Press.

    Google Scholar 

  • Southwell, R.V. (1946), “Relaxation methods in Theoretical Physics”,I, Clarendon Press, Oxford.

    Google Scholar 

  • Southwell, R.V. (1956), “Relaxation methods in Theoretical Physics”,II, Claredon Press, Oxford.

    MATH  Google Scholar 

  • Spalding, D.A. (1972), “A novel finite difference formulation for differential equations involving both first and second derivatives”,Int. J. Num. Meth. Eng.,4, pp. 551–559.

    Article  Google Scholar 

  • Specht, B. (1988), “Modified shape functions for the three node plate bendingelement passing the patch test”,Int. J. Num. Meth. Eng.,26, pp. 705–715.

    Article  MATH  Google Scholar 

  • Strang, G. and Fix, G.J. (1973), “An Analysis of the Finite Element Method”, Prentice-Hall.

  • Stummel, F. (1980), “The limitations of the patch test”,Int. J. Num. Meth. Eng.,15, pp. 177–188.

    Article  MATH  Google Scholar 

  • Szmelter, J. (1959), “The energy method of networks of arbitrary shape in problems of the theory of elasticity”, W. Olszak, Ed.,Proc. IUTAM, 1958, Symposium on Non-Homogeneity in Elasticity and Plasticity, Pergamon Press.

  • Taig, I.C. (1961), “Structural analysis by the matrix displacement method”, Engl. Electric Aviation Report No. S017.

  • Taylor, C. and Hood, P. (1973), “A numerical solution of the Navier-Stodkes equations using the finite element techniques”,Comp. Fluids,1, pp. 73–100.

    Article  MATH  MathSciNet  Google Scholar 

  • Taylor, R.L., Zienkiewicz, O.C., Simo, C. and Chan, H.C. (1986), “The patch test—a condition for assessingf.e.m. convergence”,Int. J. Num. Meth. Eng.,22, pp. 39–62.

    Article  MATH  MathSciNet  Google Scholar 

  • Tong, P. (1969), “Exact solution of certain problems by the finite element method”,J. AIAA,7, pp. 179–180.

    Article  Google Scholar 

  • Trefftz, E. (1926), “Ein Gegenstück zum Ritzschen Verfahren”,Proc. 2nd Int. Congress Appl. Mech., Zürich.

  • Turner, M.J., Clough, R.W., Martin, H.C. and Topp, L.J. (1956), “Stiffness and deflection analhysis of complex structures,”J. Aero. Sci.,23, pp. 805–823.

    Google Scholar 

  • Varga, R.S. (1962), “Matrix iterative analysis”, Prentice-Hall.

  • Veubeke, B. Fraeijs (1965), “Displacement and equilibrium models in finite element method”, O.C. Zienkiewicz and G.S. Holister, Eds.,Stress Analysis, Chapter 9, pp. 145–197, Wiley.

  • Venbeke, B. Fraeijs and Zienkiewicz, O.C. (1967), “Strain energy bounds in finite element analysis”,J. Strain Analysis,2, pp. 265–271.

    Article  Google Scholar 

  • Veubeke, B. Fraeijs (1974), “Variational principles and the patch test”,Int. J. Num. Meth. Eng.,8, pp. 783–801.

    Article  MATH  Google Scholar 

  • Washizu, K. (1975), “Variational methods in elasticity and plasticity”, 2nd Ed. Pergamon Press.

  • Visser, W. (1968), “The finite element method in deformation and heat conduction problems”, Dr. Wiss. Dissertation, Tech. Hoch., Delft.

  • Wieberg, N.E. and Abdulwahab, F. (1992), “An efficient post-processing technique for stress problems based on superconvergence derivaties and equilibrium”, Ch. Hirschet al. Eds.,Num. Meth. Eng., Elsevier Science Publ.

  • Zienkiewicz, O.C. (1947), “The stress distribution in gravity dams”, InInst. Civil. Eng.,27, pp. 244–247.

  • Zienkiewicz, O.C. and Cheung, Y.K. (1964), “The finite element method for analysis of elastic isotropic and orthotropic slabs”,Proc. Inst. Civ. Eng.,28, pp. 471–488.

    Google Scholar 

  • Zienkiewicz, O.C. (1965), “Finite element procedures in the solution of plate and shell problems”, O.C. Zienkiewicz and G.S. Holister (Eds.), Chapter 8, pp. 120–144,Stress Analysis, Wiley.

  • Zienkiewicz, O.C. and Cheung, Y.K. (1965), “Finite elements in the solution of field problems”,The Engineer, pp. 507–510.

  • Zienkiewicz, O.C. and Holister, G.S. (Eds.) (1965), “Stress analysis”, J. Wiley & Son.

  • Zienkiewicz, O.C., Mayer, P. and Cheung, Y.K. (1966), “Solution of anisotropic seepage problems by finite elements”,Proc. Am. Soc. Civ. Eng.,92, EM1, pp. 111–120.

    Google Scholar 

  • Zienkiewicz, O.C., Arlett, P.L. and Bahrani, A.K. (1967), “Solution of three dimensional field problems by finite element method”,The Engineer, 27 Oct.

  • Zienkiewicz, O.C. and Cheung, Y.K. (1967), “The finite element method in structural mechanics”, McGraw-Hill, p. 272.

  • Zienkiewicz, O.C., Valliappan, S. and King, I.P. (1968), “Stress analysis of rock as a ‘no-tension’ material”,Geotechnique,18, pp. 56–66.

    Article  Google Scholar 

  • Zienkiewicz, O.C., Irons, B.M., Ergatondis, I., Ahmad, S. and Scott, F.C. (1969), “Isoparametric and associated element families for two and three dimensional analysis”,Finite Element Method in Stress Analysis, pp. 383–432, Tech. Univ. Trondheim, Tapir Press.

  • Zienkiewicz, O.C., Valliappan, S. and King, I.P. (1969), “Elasto-plastic solutions of engineering problems”, Inisital-stress, finite element approach”,Int. J. Num. Meth. Eng.,1, pp. 75–100.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O.C., Irons, B.M., Campbell, J. and Scott, F.C. (1970), “Three dimensional stress analysis”,IUTAM Symposium on High Speed Computing in Elasticity, Lieg e.

  • Zienkiewicz, O.C., Irons, B.M., Campbell, J. and Scott, F.C. (1970), “Three dimensional stress analysis”,Int. Un. Th. Appl. Mech. Symposium on High Speed Computing in Elasticity, Lieg e.

  • Zienkiewicz, O.C. (1971), “The finite element method in engineering science”, McGraw-Hill, p. 521.

  • Zienkiewicz, O.C., Too, J. and Taylor, R.L. (1971), “Reduced integration technique in general analysis of plates and shells”,Int. J. Num. Meth. Eng.,3, pp. 275–290.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O.C. and Taylor, C. (1973), “Weighted residual processes in finite elements with particular reference tro some transient and coupled problems”, J.T. Oden and E.R.A. Oliveira, Eds.,Lectures on Finite Element Method in Continuum Mechanics, 1970, Lisbon, pp. 415–458, University of Alabama Press, Huntsville.

    Google Scholar 

  • Zienkiewicz, O.C., Gallagher, R.H. and Hood, P. (1975), “Newtonian and non-Newtonian viscous incomprensible flow. Temperature induced flows and finite element solutions”, J. Whiteman, Ed.,The Mathematics of Finite Elements and Applications,II, Academic Press, London (Brunel University).

    Google Scholar 

  • Zienkiewicz, O.C. (1977), “The finite element method”, Third edition, p. 787, McGraw-Hill.

  • Zienkiewicz, O.C., Heinrich, J.C., Huyakorn, P.S. and Mitchell, A.R. (1977), “A upwind finite element scheme for two dimensional convective transport equations”,Int. J. Num. Meth. Eng.,11, pp. 131–144.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O.C., Kelly, D.W. and Bettess, P. (1977), “The couplingof the finite element method and boundary solution procedures,”Int. J. Num. Meth. Eng.,11, pp. 355–375.

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C., Oñate, E. and Heinrich, J.C. (1978), “Plastic flow in metal forming”, ASME, Winter Annual Meeting, pp. 107–120, San Francisco.

  • Zienkiewicz, O.C., de S.R. Gago, J.P. and Kelly, D.W. (1983), “The hierarchical concept in finite element analysis”,Computers & Structures,16, pp. 53–65.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O.C., Löhner, R., Morgan, K. and Nakazawa, S. (1984), “Finite elements in fluid mechanics—a decade of progress”, R.H. Gallagheret al., Eds.,Finite Elements in Fluids,5, Chapter 1, pp. 1–26, Wiley, Chichester.

    Google Scholar 

  • Zienkiewicz, O.C., Löhner, R., Morgan, K. and Peraire, J. (1986), “High speed compressible flow and other advection dominted problems of fluid mechanics,” R.H. Gallagheret al., Eds.,Finite Elements in Fluids,6, Chapter 2, pp. 41–88, Wiley, Chichester.

    Google Scholar 

  • Zienkiewicz, O.C., Qu, S., Taylor, R.L. and Nakazawa, S. (1986), “The patch test for mixed formulation,”Int. J. Num. Meth. Eng.,23, pp. 1873–1883.

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C. and Lefebvre, D. (1987), “Three field mixed approximation and the plate bending problem,”Comm. Appl. Num. Meth.,3, pp. 301–309.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O.C. and Lefebvre, D. (1987), “A robust triangular plate bending element of the Reissner-Mindlin type”,Int. J. Num. Meth. Eng.,26, pp. 337–357.

    Article  Google Scholar 

  • Zienkiewicz, O.C. and Zhu, J.Z. (1987), “A simple error estimator and adaptive procedure for practical engineering analysis”,Int. J. Num. Meth. Eng.,24, pp. 337–357.

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C. and Taylor, R.L. (1989), “The finite element method”,I, (Basic Formulation and Linear problems), McGraw-Hill, p. 648.

  • Zienkiewicz, O.C. and Zhu, J.Z. (1989), “Error estimation and adaptive refinement for plate bending problems”,Int. J. Num. Meth. Eng.,28, pp. 2839–2853.

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Paul, D.K. and Shiomi, T. (1990), “Static and dynamic behaviour of geomaterials-A rational approach to quantitative solutions. Part I-Fully saturated problems”,Proc. Roy. Soc. London,A429, pp. 285–309.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O.C., Xie, Y.M., Schrefler, B.A., Ledesma, A. and Bicanic, N. (1990), “Static and dynamic behaviour of geomaterials-a rational approach to quantitative solutions. Part II-Semi saturated problems”,Proc. Roy. Soc. London,A429, pp. 311–321.

    MATH  Google Scholar 

  • Zienkiewicz, O.C. and Oñate, E. (1991), “Finite volumes vs. finite elements. Is there really a choice”,Nonlinear Computational Mechanics, State of the Art, Eds. P. Wriggers and W. Wagner, Springer.

  • Zienkiewicz, O.C. and Taylor, R.L. (1991), “The finite element method”,II, (Solid and Fluid Mechanics, Dynamics and Nonlinearity), McGraw-Hill, p. 807.

  • Zienkiewicz, O.C. and Zhu, J.Z. (1992), “The superconvergent, path recovery (SPR) and adaptive finite element refinement”,Comp. Meth. in Appl. Mech. Eng.,101, pp. 207–224.

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C. and Zhu, J.Z. (1992), “Superconvergent patch recovery and a posteriori error estimation in the finite element method. Part I-A general superconvergent recovery technique”,Int. J. Num. Meth. Eng.,33, pp. 1331–1364.

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C. and Zhu, J.Z. (1992), “Superconvergent patch recovery and a posteriori error estimation in the finite element method. Part II-The Zienkiewicz Zhu a posteriori error estimator”,Int. J. Num. Meth. Eng.,33, pp. 1365–1382.

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C. and Codina, R. (1995), “A general algorithm for compressible and incompressible flow. Part I-The split chartacteristic based scheme”,Int. J. Num. Meth. in Fluids.

  • Zienkiewicz, O.C., Morgan, K., Satya Sai, B.V.K., Codina, R. and Vazquez, M. (1995), “A general algorithm for compressible and incompressible flow. Part II-Tests on the explicit form”,Int. J. Num. Meth. in Fluids.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is being published at the same time in Volume IV of the Handbook of Numerical Analysis, ed. J.L. Lions and P. Ciarlet (Elsevier Science).

The author also holds the Unesco Chair of Numerical Methods in Engineering at the Universitat Politècnica de Catalunya, Barcelona, Spain where part of this paper was written.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zienkiewicz, O.C. Origins, milestones and directions of the finite element method— A personal view. ARCO 2, 1–48 (1995). https://doi.org/10.1007/BF02736188

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736188

Keywords

Navigation