Skip to main content
Log in

Jaw morphology and function in living and fossil old world monkeys

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

This allometric investigation on a sample of 29 cercopithecine and 22 colobine taxa augments the data and implications of prior work on subfamilial variation in mandibular form and function in recent Cercopithecidae. To increase the size range encompassed by living cercopithecines and colobines, I included many of the larger-bodied fossil specimens. These analyses serve to fill a gap in our understanding of size-related changes in masticatory function and symphyseal morphology and curvature in extant and extinct Old World monkeys. Results of subfamilial scaling comparisons indicate that for a given jaw length, colobines possess significantly more robust corpora and symphyses than those of cercopithecines, especially at smaller sizes. Following from previous work, the most plausible explanation for why the subfamilies differ in relative corporeal and symphyseal dimensions is that colobine mandibles experience elevated loads and greater repetitive loading during mastication due, on average, to processing a diet of tough leaves and/or seeds. Although colobines have relatively larger symphyses, subfamilial analyses of symphyseal curvature demonstrate that they evince less symphyseal curvature vis-à-vis cercopithecines of a common size. Moreover, both subfamilies exhibit similar allometric changes in the degree of curvature, such that larger-bodied Old World monkeys have more curved symphyses than those of smaller taxa. Subfamilial scaling analyses also indicate that colobines possess a shorter M2 bite-point length relative to masseter lever-arm length, but not versus temporalis lever-arm length. Thus, as compared to cercopithecines, colobines can recruit less masseter-muscle force to produce similar bite forces during mastication. In both clades, M2 bite-point length scales with positive allometry relative to masseter lever-arm length, such that larger species are less efficient at generating molar bite forces. This seems especially important due to the lack of subfamily difference in M2 bite-point:temporalis lever-arm scaling (which is isometric across cercopithecids). A consideration of extinct cercopithecids indicates that many of the large-bodied papionins have more robust corpora, due perhaps to a diet which was of similar toughness to that of extant and extinct colobines. However, the biomechanical arrangements of the masseter and temporalis in all but one fossil cercopithecine and all of the fossil colobine specimens are much as predicted for a subfamilial member of its skull size. That most large-bodied papionins with tougher diets nonetheless maintain a less efficient jaw-muscle configuration may be due to stronger offsetting selection for increased relative canine size and gape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antón, S. C. (1996). Cranial adaptation to a high attrition diet in Japanese macaques.Int. J. Primatol. 17: 401–427.

    Article  Google Scholar 

  • Benefit, B. R., and McCrossin, M. L. (1990). Diet, species diversity and distribution of African fossil baboons.Kroeber Anthropol. Soc. Pap. 71/72: 77–93.

    Google Scholar 

  • Biknevicius, A. R., and Ruff, C. B. (1992). The structure of the mandibular corpus and its relationship to feeding behaviours in extant carnivorans.J. Zool. 228: 479–507.

    Article  Google Scholar 

  • Bouvier, M. (1986a). A biomechanical analysis of mandibular scaling in Old World monkeys.Am. J. Phys. Anthropol. 69: 473–482.

    Article  Google Scholar 

  • Bouvier, M. (1986b). Biomechanical scaling of mandibular dimensions in New World monkeys.Int. J. Primatol. 7: 551–567.

    Article  Google Scholar 

  • Bouvier, M., and Hylander, W.L. (1981). Effect of bone strain on cortical bone structure in macaques(Macaca mulatto).J. Morphol. 167: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Cachel, S. M. (1984). Growth and allometry in primate masticatory muscles.Arch. Oral Biol. 29: 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Cole, T. M. (1992). Postnatal heterochrony of the masticatory apparatus inCebus apella andCebus albifrons.J. Hum. Evol. 23: 253–282.

    Article  Google Scholar 

  • Daegling, D. J. (1989). Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus.Am. J. Phys. Anthropol. 80: 91–106.

    Article  PubMed  CAS  Google Scholar 

  • Daegling, D. J. (1992). Mandibular morphology and diet in the genusCebus.Int. J. Primatol. 13: 545–570.

    Article  Google Scholar 

  • Daegling, D. J. (1993). Functional morphology of the human chin.Evol. Anthropol. 1: 170–177.

    Article  Google Scholar 

  • Daegling, D. J., Ravosa, M. J., Johnson, K. R., and Hylander, W. L. (1992). Influence of teeth, alveoli, and periodontal ligaments on torsional rigidity in human mandibles.Am. J. Phys. Anthropol. 89: 59–72.

    Article  PubMed  CAS  Google Scholar 

  • Delson, E. (1975). Evolutionary history of the Cercopithecidae. In Szalay, F. S. (ed.),Approaches to Primate Paleobiology. Contributions to Primatology, Number 5, S. Karger, Basel, pp. 167–217.

    Google Scholar 

  • Delson, E., and Dean, D. (1993). ArePapio baringensis R. Leakey, 1969, andP. quadratirostris Iwamoto, 1982, species ofPapio orTheropithecus? In Jablonski, N. G. (ed.),Theropithecus: Rise and Fall of a Genus, Cambridge University Press, Cambridge, pp. 125–156.

    Google Scholar 

  • Demes, B., Preuschoft, H., and Wolff, J. E. A. (1984). Stress-strength relationships in the mandibles of hominoids. In Olivers, D. J., Wood, B. A., and Bilsborough, A. (eds.),Food Acquisition and Processing in Primates, Plenum Press, New York, pp. 369–390.

    Google Scholar 

  • Demment, M. W., and Soest, P. J. (1985). A nutritional explanation for body-size patterns of ruminant and non-ruminant herbivores.Am. Nat. 125: 641–647.

    Article  Google Scholar 

  • DuBrul, E. L. (1977). Early hominid feeding mechanisms.Am. J. Phys Anthropol. 47: 305–320.

    Article  CAS  Google Scholar 

  • Freeman, P. W. (1979). Specialized insectivory: Beetle-eating and moth-eating molossid bats.J. Mammal. 60: 467–479.

    Article  Google Scholar 

  • Freeman, P. W. (1981). Correspondence of food habits and morphology in insectivorous bats.J. Mammal. 62: 166–173.

    Article  Google Scholar 

  • Freeman, P. W. (1984). Functional cranial analysis of large animalivorous bats (Microchiroptera).Biol. J. Linn. Soc. 21: 387–408.

    Google Scholar 

  • Freeman, P. W. (1988). Frugivorous and animalivorous bats (Microchiroptera): Dental and cranial adaptations.Biol. J. Linn. Soc. 33: 249–272.

    Google Scholar 

  • Greaves, W. S. (1985). The generalized carnivore jaw.Zool. J. Linn. Soc. 85: 267–274.

    Google Scholar 

  • Happel, R. (1988). Seed-eating by West African cercopithecines, with reference to the possible evolution of bilophodont molars.Am. J. Phys Anthropol. 75: 303–327.

    Article  PubMed  CAS  Google Scholar 

  • Hylander, W. L. (1975). Incisor size and diet in anthropoids with special reference to Cercopithecidae.Science 189: 1095–1098.

    Article  PubMed  CAS  Google Scholar 

  • Hylander, W. L. (1979a). Mandibular function inGalago crassicaudatus andMacaca fascicularis: Anin vivo approach to stress analysis of the mandible.J. Morphol. 159: 253–296.

    Article  PubMed  CAS  Google Scholar 

  • Hylander, W. L. (1979b). The functional significance of primate mandibular form.J. Morphol. 160: 223–240.

    Article  PubMed  CAS  Google Scholar 

  • Hylander, W. L. (1981). Patterns of stress and strain in the macaque mandible. In Carlson, D. S. (ed.),Craniofacial Biology. Monograph 10, Craniofacial Growth Series, University of Michigan Press, Ann Arbor, pp. 1–37.

    Google Scholar 

  • Hylander, W. L. (1984). Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses.Am. J. Phys. Anthropol. 64: 1–46.

    Article  PubMed  CAS  Google Scholar 

  • Hylander, W. L. (1985). Mandibular function and biomechanical stress and scaling.Am. Zool. 25: 315–330.

    Google Scholar 

  • Hylander, W. L. (1988). Implications ofin vivo experiments for interpreting the functional significance of “robust” australopithecine jaws. In Grine, F. E. (ed.),Evolutionary History of the “Robust” Australopithecines, Aldine de Gruyter, New York, pp. 55–83.

    Google Scholar 

  • Hylander, W. L., and Johnson, K. R. (1985). Temporalis and masseter function during incision in humans and macaques.Int. J. Primatol. 6: 289–322.

    Article  Google Scholar 

  • Hylander, W. L., and Johnson, K. R. (1994). Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons.Am. J. Phys. Anthropol. 94: 523–547.

    Article  PubMed  CAS  Google Scholar 

  • Hylander, W. L., Johnson, K. R., and Crompton, A. W. (1987). Loading patterns and jaw movements during mastication inMacaca fascicularis: A bone-strain, electromyographic and cineradiographic analysis.Am. J. Phys. Anthropol. 72: 287–314.

    Article  PubMed  CAS  Google Scholar 

  • Hylander, W. L., Johnson, K. R., and Crompton, A. W. (1992). Muscle force recruitment and biomechanical modeling: An analysis of masseter muscle function during mastication inMacaca fascicularis.Am. J. Phys. Anthropol. 88: 365–387.

    Article  PubMed  CAS  Google Scholar 

  • Hylander, W. L., Johnson, K. R., Ravosa, M. J., and Ross, C. F. (1996). Mandibular bone-strain and jaw-muscle recruitment patterns during mastication in anthropoids and prosimians.Am. J. Phys. Anthropol. Suppl. 22: 128–129.

    Google Scholar 

  • Jablonski, N. G. (1993). Evolution of the masticatory apparatus inTheropithecus. In Jablonski, N.G. (ed.),Theropithecus: Rise and Fall of a Genus, Cambridge University Press, Cambridge, pp. 299–329.

    Google Scholar 

  • Janis, C. (1976). The evolutionary strategy of the Equidae and the origins of rumen and caecal digestion.Evolution 30: 757–774.

    Article  Google Scholar 

  • Jolly, C. J. (1970a). The large African monkeys as an adaptive array. In Napier, J. R., and Napier, P. H. (eds.),Old World Monkeys: Evolution, Systematics, and Behavior, Academic Press, New York, pp. 141–174.

    Google Scholar 

  • Jolly, C. J. (1970b). The seed-eaters: A new model of hominid differentiation based on a baboon analogy.Man 5: 5–28.

    Article  Google Scholar 

  • Kay, R. F. (1978). Molar structure and diet in extant Cercopithecidae. In Butler, P. M., and Joysey, K. A. (eds.),Development, Function and Evolution of Teeth, Academic Press, New York, pp. 309–339.

    Google Scholar 

  • Kay, R. F., and Hylander, W. L. (1978). The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea (Marsupialia). In Montgomery, G. G. (ed.),The Ecobgy of Arboreal Folivores, Smithsonian Institution Press, Washington, DC, pp. 173–191.

    Google Scholar 

  • Lucas, P. W., and Teaford, M. F. (1994). Functional morphology of colobine teeth. In Davies, A. G., and Oates, J. F. (eds.),Colobine Monkeys: Their Ecology, Behaviour and Evolution, Cambridge University Press, Cambridge, pp. 173–203.

    Google Scholar 

  • Luschei, E. S., and Goodwin, G. M. (1974). Patterns of mandibular movement and jaw muscle activity during mastication in monkeys.J. Neurophysiol. 37: 954–966.

    PubMed  CAS  Google Scholar 

  • McNaughton, S. J., and Georgiadis, N. J. (1986). Ecology of African grazing and browsing mammals.Annu. Rev. Ecol. Syst. 17: 39–65.

    Article  Google Scholar 

  • Pan, R., Peng, Y., Ye, Z., Wang, H., and Yu, F. (1995). Comparison of masticatory morphology betweenRhinopithecus bieti andR. roxellana.Am. J. Primatol. 35: 271–281.

    Article  Google Scholar 

  • Radinsky, L. R. (1981). Evolution of skull shape in carnivores. 1. Representative modern carnivores.Biol. J. Linn. Soc. 15: 369–388.

    Google Scholar 

  • Radinsky, L. R. (1984). Ontogeny and phytogeny in horse skull evolution.Evolution 38: 1–15.

    Article  Google Scholar 

  • Ravosa, M. J. (1988). Browridge development in Cercopithecidae: A test of two models.Am. J. Phys. Anthropol. 76: 535–555.

    Article  Google Scholar 

  • Ravosa, M. J. (1990). A functional assessment of subfamilial variation in maxillomandibular morphology among Old World monkeys.Am. J. Phys. Anthropol. 82: 199–212.

    Article  PubMed  CAS  Google Scholar 

  • Ravosa, M. J. (1991a). Structural allometry of the mandibular corporus and symphysis in prosimian primates.J. Hum. Evol. 20: 3–20.

    Article  Google Scholar 

  • Ravosa, M. J. (1991b). The ontogeny of cranial sexual dimorphism in two Old World monkeys:Macaca fascicularis (Cercopithecinae) andNasalis larvatus (Colobinae).Int. J. Primatol. 12: 403–426.

    Article  Google Scholar 

  • Ravosa, M. J. (1992). Allometry and heterochrony in extant and extinct Malagasy primates.J. Hum. Evol. 23: 197–217.

    Article  Google Scholar 

  • Ravosa, M. J. (1996a). Mandibular form and function in North American and European Adapidae and Omomyidae.J. Morphol. 229: 171–190.

    Article  PubMed  CAS  Google Scholar 

  • Ravosa, M. J. (1996b). Jaw scaling and biomechanics in fossil taxa.J. Hum. Evol. 30: 159–160.

    Article  Google Scholar 

  • Ravosa, M. J. (1996c). Experimental analysis of masticatory function in capuchin monkeys.Am. J. Phys. Anthropol. Suppl. 22: 194.

    Google Scholar 

  • Ravosa, M. J., and Hylander, W. L. (1994). Function and fusion of the mandibular symphysis in primates: Stiffness or strength? In Fleagle, J. G., and Kay, R. F. (eds.),Anthropoid Origins, Plenum Press, New York, pp. 447–468.

    Google Scholar 

  • Ravosa, M. J., and Profant, L. (1996). Evolutionary morphology of the skull in Old World monkeys. In Whitehead, P. F., and Jolly, C. J. (eds.),Old World Monkeys, Cambridge University Press, Cambridge, in press.

    Google Scholar 

  • Ravosa, M. J., and Ross, C. F. (1994). Craniodental allometry and heterochrony in two howler monkeys:Alouatta seniculus andA. palliata.Am. J. Primatol. 33: 277–299.

    Article  Google Scholar 

  • Ravosa, M. J., and Shea, B. T. (1994). Pattern in craniofacial biology: Evidence from the Old World monkeys (Cercopithecidae).Int. J. Primatol. 15: 801–822.

    Google Scholar 

  • Sailer, L. D., Gaulin, S. J. C., Boster, J. S., and Kurland, J. A. (1985). Measuring the relationship between dietary quality and body size in primates.Primates 26: 14–27.

    Article  Google Scholar 

  • Scapino, R. P. (1981). Morphological investigation into functions of the jaw symphysis in carnivorans.J. Morphol. 167: 339–375.

    Article  PubMed  CAS  Google Scholar 

  • Shea, B. T. (1983). Size and diet in the evolution of African ape craniodental form.Folia Primatol. 40: 32–68.

    PubMed  CAS  Google Scholar 

  • Shea, B. T., Hammer, R. E., Brinster, R. L., and Ravosa, M. J. (1990). Relative growth of the skull and postcranium in giant transgenic mice.Genet. Res. 56: 21–34.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, L. M. (1995). Morphological correlates of dietary resource partitioning in the African Bovidae.J. Mammal. 76: 448–471.

    Article  Google Scholar 

  • Takahashi, L. K., and Pan, R. (1994). Mandibular morphometrics among macaques: The case ofMacaca thibetana.Int. J. Primatol. 15: 597–621.

    Article  Google Scholar 

  • Tattersall, I. (1973). Cranial anatomy of the Archaeolemurinae (Lemuroidea, Primates).Anthropol. Pap. Am. Mus. Nat. Hist 52: 1–110.

    Google Scholar 

  • Teaford, M. F. (1993). Dental microwear and diet in extant and extinctTheropithecus: Preliminary analyses. In Jablonski, N. G. (ed.),Theropithecus: Rise and Fall of a Genus, Cambridge University, Cambridge, pp. 331–349.

    Google Scholar 

  • Vinyard, C. J. (1996). Ontogeny, function and scaling in the macaque mandibular symphysis.Am. J. Phys. Anthropol. Suppl. 22: 235–236.

    Google Scholar 

  • Walker, P., and Murray, P. (1975). An assessment of masticatory efficiency in a series of anthropoid primates with special reference to the Colobinae and Cercopithecinae. In Tuttle, R. H. (ed.),Functional Morphology and Evolution, Mouton, Paris, pp. 135–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravosa, M.J. Jaw morphology and function in living and fossil old world monkeys. Int J Primatol 17, 909–932 (1996). https://doi.org/10.1007/BF02735294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02735294

key words

Navigation