International Journal of Primatology

, Volume 17, Issue 4, pp 475–503 | Cite as

Leaf-swallowing by chimpanzees: A behavioral adaptation for the control of strongyle nematode infections

  • Michael A. Huffman
  • Jonathan E. Page
  • Michael V. K. Sukhdeo
  • Shunji Gotoh
  • Mohamedi S. Kalunde
  • Thushara Chandrasiri
  • G. H. Neil Towers
Article

Abstract

Swallowing whole leaves by chimpanzees and other African apes has been hypothesized to have an antiparasitic or medicinal function, but detailed studies demonstrating this were lacking. We correlate for the first time quantifiable measures of the health of chimpanzees with observations of leaf-swallowing in Mahale Mountains National Park, Tanzania. We obtained a total of 27 cases involving the use ofAspilia mossambicensis (63%),Lippia plicata (7%),Hibiscus sp. (15%),Trema orientalis (4%), andAneilema aequinoctiale (11%), 15 cases by direct observation of 12 individuals of the Mahale M group. At the time of use, we noted behavioral symptoms of illness in the 8 closely observed cases, and detected single or multiple parasitic infections (Strongyloides fulleborni, Trichuris trichiura, Oesophagostomum stephanostomum) in 10 of the 12 individuals. There is a significant relationship between the presence of whole leaves (range, 1–51) and worms of adultO. stephanostomum (range, 2–21) in the dung. HPLC analysis of leaf samples collected after use showed that thiarubrine A, a compound proposed to act as a potent nematocide in swallowingAspilia spp., was not present in leaves ofA. mossambicensis or the three other species analyzed. Alternative nematocidal or egg-laying inhibition activity was not evident. Worms ofO. stephanostomum were recovered live and motile from chimpanzee dung, trapped within the folded leaves and attached to leaf surfaces by trichomes, though some were moving freely within the fecal matter, suggesting that the physical properties of leaves may contribute to the expulsion of parasites. We review previous hypotheses concerning leaf-swallowing and propose an alternative hypothesis based on physical action.

Key words

chimpanzees antiparasite behavior physical expulsion Oesophagostomum stephanostomum trichomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, A. C. (1982). Co-evolution between hosts and infectious disease agents and its effect on virulence. In Anderson, R. M., and May, R. M. (eds.),Population Biology of Infectious Diseases, Springer-Verlag, Berlin, pp. 245–267.Google Scholar
  2. Anderson, R. C. (1992).Nematode Parasites of Vertebrates. Their Development and Transmission, CAB International, Walingford.Google Scholar
  3. Anderson, R. M., and May, R. M. (1978). Regulation and stability of host-parasite population interactions.J. Anim. Ecol. 47: 219–247.CrossRefGoogle Scholar
  4. Anderson, R. M., and May, R. M. (1982).Population Biology of Infectious Diseases, Springer-Verlag, Berlin.Google Scholar
  5. Balza, F., and Towers, G. H. N. (1993). Naturally occurring C13 dithiacyclohexadiene and thiophenes from the Asteraceae. In Waterman, P. G. (ed.),Methods in Plant Biochemistry, Vol. 8, Academic Press, London, pp. 551–572.Google Scholar
  6. Balza, F., Lopez, I., Rodriguez, E., and Towers, G. H. N. (1989). Dithiacyclohexadienes and thiophenes fromAmbrosia chamissonis.Phytochemistry 28: 3523–3524.CrossRefGoogle Scholar
  7. Beaver, P. C., Jung, R. C., and Cupp, E. W. (1984).Clinical Parasitology, 9th ed., Lea & Febiger, Philadelphia.Google Scholar
  8. Bernard, C. J., and Behnke, J. M. (1990).Parasitism and Host Behaviour, Taylor & Francis, London.Google Scholar
  9. Boesch, C. (1996). Innovation in chimpanzees.Int. J. Primatol. 16: 1–16.CrossRefGoogle Scholar
  10. Bozzola, J. J., and Russell, L. D. (1991).Electron microscopy: Principles and Techniques for Biologists, Jones and Bartlett, Boston.Google Scholar
  11. Brack, M. (1987).Agents Transmissible from Simians to Man, Springer-Verlag, Berlin.Google Scholar
  12. Crofton, H. D. (1971). A quantitative approach to parasitism.Parasitol. 62: 179–193.CrossRefGoogle Scholar
  13. Diamant, N. E. A., and Bortoff, A. (1969). Nature of intestinal slow wave frequency gradient.Am. J. Physiol. 215: 301–307.Google Scholar
  14. Ellis, S. M. (1993).Thiarubrine Production in Roots and Root Cultures of Ambrosia chamissonis, M.Sc. thesis, University of British Columbia, Vancouver.Google Scholar
  15. Freeman, F., Aregullin, M., and Rodriguez, E. (1993). Naturally occuring 1,2-dithiins. In Oae, S. (ed.),Reviews on Heteroatom Chemistry, Vol. 9, MYU, Tokyo, pp. 1–19.Google Scholar
  16. Futuyma, D. J., and Slatkin, M. (1983).Coevolution, Sinauer Associates, Sunderland, MA.Google Scholar
  17. Georgi, J. R. (1985).Parasitology for Veterinarians, Saunders, Philadelphia.Google Scholar
  18. Grundy, D. (1985).Gastrointestinal Motility. The Integration of Physiological Mechanisms, MTP Press, Lancaster.Google Scholar
  19. Hamilton, W. D. (1974a). The genetical evolution of social behavior. I.Int. J. Theoret. Biol. 7: 1–16.CrossRefGoogle Scholar
  20. Hamilton, W. D. (1974b). The genetical evolution of social behavior. II.Int. J. Theoret. Biol. 7: 17–52.CrossRefGoogle Scholar
  21. Hamilton, W. D., and Zuk, M. (1982). Heritable true fitness and bright birds: A rule for parasites?Science 218: 384–387.PubMedCrossRefGoogle Scholar
  22. Hart, B. L. (1990). Behavioral adaptations to pathogens and parasites: Five strategies.Neurosci. Biobehav. Rev. 14: 273–294.PubMedCrossRefGoogle Scholar
  23. Holmes, J. C., and Zohar, S. (1990). Pathology and host behavior. In Barnard, C. J., and Behnke, J. M. (eds.),Parasitism and Host Behavior, Taylor and Frances, London, pp. 34–63.Google Scholar
  24. Huffman, M. A. (1993). The study of medicinal plant use in wild chimpanzees: Current status and future prospects.Primate Res. 9: 179–187.CrossRefGoogle Scholar
  25. Huffman, M. A. (1994). The C.H.I.M.P.P. Group: A multidisciplinary investigation into the use of medicinal plants by chimpanzees.Pan Africa News 1(1): 3–5.Google Scholar
  26. Huffman, M. A., and Seifu, M. (1989). Observations on the illness and consumption of a possibly medicinal plantVemonia amygdalina (Del.), by a wild chimpanzee in the Mahale Mountains National Park, Tanzania.Primates 30: 51–63.CrossRefGoogle Scholar
  27. Huffman, M. A., and Wrangham, R. W. (1994). The diversity of medicinal plant use by chimpanzees in the wild. In Wrangham, R. W., McGrew, W. C., deWaal, F. B., and Heltne, P. G. (eds.),Chimpanzee Cultures, Harvard University Press, Cambridge, MA, pp. 129–148.Google Scholar
  28. Huffman, M. A., Nishida, T., and Uehara, S. (1990). Intestinal parasites and medicinal plant use in wild chimpanzees: Possible behavioral adaptation for the control of parasites.Mahale Mountains Chimpanzees Research Project. Ecological Report No. 72, Kyoto University, Kyoto.Google Scholar
  29. Huffman, M. A, Gotoh, S., Izutsu, D., Kosimizu, K., and Kalunde, M. S. (1993a). Further observations on the use of the medicinal plant,Vernonia amygdalina (Del) by a wild chimpanzee, its possible affect on parasite load, and its phytochemistry.Afric. Stud. Mongr. 14: 227–240.Google Scholar
  30. Huffman, M. A., Gotoh, S., Turner, L. A., Hamai, M., and Yoshida, K. (1993b). Seasonal and annual variation in the occurrence of intestinal parasite infections in chimpanzees(Pan troglodytes schweinfurthii) of the Mahale Mountains National Park, western Tanzania.Mahale Mountains Chimpanzees Research Project. Ecological Report No. 87. Kyoto University, Kyoto.Google Scholar
  31. Jisaka, M., Kawanaka, M., Sugiyama, H., Takegawa, K., Huffman, M. A., Ohigashi, H., and Koshimizu, K. (1992). Antischistosomal activities of sesquiterpene lactones and steroid glucosides fromVernonia amygdalina, possibly used by wild chimpanzees against parasite-related diseases.Biosci. Biotech. Biochem. 56(5): 845–846.CrossRefGoogle Scholar
  32. KaWabata, M., and Nishida, T. (1991). A preliminary note on the intestinal parasites of wild chimpanzees of the Mahale Mountains, Tanzania.Primates 32: 275–278.CrossRefGoogle Scholar
  33. Koshimizu, K., Oigashi, H., and Huffman, M. A. (1994). Use ofVemonia amygdalina by wild chimpanzee; Possible roles of its bitter and related constituents.Physiol Behav. 56(6): 1209–1216.PubMedCrossRefGoogle Scholar
  34. Lwande, W., MacFoy, C., Okecj, M., Delle Monache, Marino-Bettolo, G. B. (1985). Research on African medicinal plants. VIII. Kaurenoic acids fromAspilia pluriseta.Fitoerapia. 56: 126–128.Google Scholar
  35. Matsuzawa, T., and Yamakoshi, G. (1996). Comparison of chimpanzee material culture between Bossou and Nimba, West Africa. In Russon, A., Bard, A., and Parker, S. (eds.),Reaching into Thought, Cambridge University Press, Cambridge, pp. 211–232.Google Scholar
  36. Myers, B. J., and Kuntz, R. E. (1972). A checklist of parasites and commensals reported for the chimpanzee (Pan).Primates 13(4): 433–471.CrossRefGoogle Scholar
  37. Newton, P. N., and Nishida, T. (1990). Possible buccal administration of herbal drugs by wild chimpanzees,Pan troglodytes.Anim. Behav. 39(4): 798–801.CrossRefGoogle Scholar
  38. Nishida, T. (1990). A quarter century of research in the Mahale Mountains: An overview. In Nishida, T. (ed.),The Chimpanzees of the Mahale Mountains. Sexual and Life History Strategies, University of Tokyo Press, Tokyo, pp. 3–35.Google Scholar
  39. Nishida, T., and Kawanaka, K. (1972). Inter-unit-group relationships among wild chimpanzees of the Mahali Mountains.Kyoto Univ. African Studies 7: 131–169.Google Scholar
  40. Nishida, T., and Uehara, S. (1983). Natural diet of chimpanzees(Pan troglodytes schweinfurthü): Long term record from the Mahale Mountains, Tanzania.Afric. Stud. Monogr. 3: 109–130.Google Scholar
  41. Ohigashi, H., Takagaki, T., Koshimizu, K., Watanabe, K., Kaji, M., Hoshino, J., Nishida, Huffman M. A., Takasaki, H., Jato, J., and Muanza, D. N. (1991). Biological activities of plant extracts from tropical Africa.Afric. Study Monogr. 12(4): 201–210.Google Scholar
  42. Ohigashi, H., Huffman, M. A, Izutsu, D., Koshimizu, K., Kawanaka, M., Sugiyama, H., Kirby, G. C., Warhurst, D. C., Allen, D., Wright, C. W., Phillipson, J. D., Timmon-David, P., Delnas, F., Elias, R., and Balansard, G. (1994). Toward the chemical ecology of medicinal plant-use in chimpanzees: The case ofVemonia amygdlina (Del.). A plant used by wild chimpanzees possibly for parasite-related diseases.J. Chem. Ecol. 20: 541–553.CrossRefGoogle Scholar
  43. Page, J. E., Balza, F., Nishida, T., and Towers, G. H. N. (1992). Biologically active diterpenes fromAspilia mossambicensis, a chimpanzee medicinal plant.Phytochem. 31: 3437–3439.CrossRefGoogle Scholar
  44. Price, P. W. (1980).Evolutionary Biology of Parasites, Princeton University Press, Princeton, NJ.Google Scholar
  45. Robinson, H. (1992). New combinations in Elaphranda Strother (Ecliptinae-Hiliantheae-Asteracea).Phytologia 72: 144–151.Google Scholar
  46. Rodriguez, E., and Wrangham, R. W. (1993). Zoopharmacognosy: The use of medicinal plants by animals. In Downum, K. R., Romeo, J. T., and Stafford, H. A. (eds.),Phytochemical Potentials of Tropical Plants, Plenum Press, New York, pp. 89–105.Google Scholar
  47. Rodriguez, E., Aregullin, M., Nishida, T., Uehara, S., Wrangham, R. W., Abramowski, Z., Finlayson, A., and Towers, G. H. N. (1985). Thiarubrin A, a bioactive constituent ofAspilia (Asteraceae) consumed by wild chimpanzees.Experientia 41: 419–420.PubMedCrossRefGoogle Scholar
  48. Sukhdeo, M. V. K. (1990). Habitat selection by helminths: A hypothesis.Parasitol. Today 6: 234–237PubMedCrossRefGoogle Scholar
  49. Sukhdeo, M. V. K., and Metrick, D. F. (1984). Effect of size ofTrichinella spiralis infections on glucose and ion transport in rat intestine.J. Parasitol. 70: 499–506.PubMedCrossRefGoogle Scholar
  50. Sukhdeo, M. V. M., and Sukhdeo, S. C. (1994). Optimal habitat selection behaviour by helminths within the host.Parasitology S109: 41–55.Google Scholar
  51. Takasaki, H., and Hunt, K. (1987). Further medicinal plant consumption in wild chimpanzees?Afric. Stud. Monogr. 8: 125–128.Google Scholar
  52. Takasaki, H., Nishida, T., Uehara, S., Norikoshi, K., Kawanaka, K., Takahata, Y., Hiraiwa-Hasegawa, M., Hasegawa, T., Hayaki, H., Masui, K., and Huffman, M. A. (1990). Appendix: Summary of meteorological data at Mahale Research Camps, 1973–1988. In Nishida, T. (ed.),The Chimpanzees of the Mahale Mountains. Sexual and Life History Strategies, University of Tokyo Press, Tokyo, pp. 291–300.Google Scholar
  53. Toft, C. A., Aeschlimann, A., and Bolis, L. (1991).Parasite-Host Associations;Coexistence or Conflict? Oxford Science, Oxford.Google Scholar
  54. Towers, G. H. N., Abramowski, Z., Finlayson, A. J., and Zucconi, A. (1985). Antibiotic properties of thiarubrine-A, a naturally occurring dithiacyclohexadiene polyine.Planta Med. 3: 225–229.PubMedCrossRefGoogle Scholar
  55. Soest, P. J. (1982).Nutritional Ecology of the Ruminants, O & B Books, OR.Google Scholar
  56. Wrangham, R. W. (1975).The Behavioural Ecology of Chimpanzees in Gombe National Park, Tanzania, Ph.D. thesis, Cambridge University, Cambridge.Google Scholar
  57. Wrangham, R. W. (1977). Feeding behavior of chimpanzees in Gombe National Park, Tanzania. In Clutton-Brock, T. H. (ed.),Primate Ecology, London, Academic Press, pp. 504–538.Google Scholar
  58. Wrangham, R. W. (1996). Leaf-swallowing by chimpanzees, and its relation to tapeworm infection.Am. J. Primatol. 37: 297–303.CrossRefGoogle Scholar
  59. Wrangham, R. W., and Goodall, J. (1989). Chimpanzee use of medicinal leaves. In Heltne, P. G., and Marguardt, L. A. (eds.),Understanding Chimpanzees, Harvard University Press, Cambridge, MA, pp. 22–37.Google Scholar
  60. Wrangham, R. W., and Nishida, T. (1983).Aspilia spp. leaves: A puzzle in the feeding behavior of wild chimpanzees.Primates 24: 276–282.CrossRefGoogle Scholar
  61. Yang, L.-L., Yen, K.-Y., Konno, C., Oshima, Y., and Hikino, H. (1986). Antihepatotoxic principles ofWedelia chinensis herbs.Planta Med. 52: 499–500.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Michael A. Huffman
    • 1
    • 2
  • Jonathan E. Page
    • 3
  • Michael V. K. Sukhdeo
    • 4
  • Shunji Gotoh
    • 5
  • Mohamedi S. Kalunde
    • 6
  • Thushara Chandrasiri
    • 4
  • G. H. Neil Towers
    • 3
  1. 1.Section of EcologyKyoto University, Primate Research InstituteAichiJapan
  2. 2.Department of AnthropologyUniversity of Colorado at DenverDenver
  3. 3.Botany DepartmentUniversity of British ColumbiaVancouverCanada
  4. 4.Department of Animal Sciences, Cook CollegeRutgers UniversityNew Brunswick
  5. 5.Laboratory Primate CenterKyoto University Primate Research InstituteInuyamaJapan
  6. 6.Kigoma

Personalised recommendations