Skip to main content
Log in

Broken chiral symmetry in 2+1 quantum chromodynamics at finite temperature

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The nonperturbative theory based on the gauge technique is developed for zero temperature and is then extended to finite temperatures in order to investigate chiral-symmetry breakdown in standard continuum field theory of Quantum Chromodynamics in (2+1)-dimensional space. A linearized approximate Dyson-Schwinger equation of the theory is employed to establish that chiral symmetry is broken for a range of temperatures. We are able to demonstrate that the system of quarks exhibits phase transitions characterized by a deconfinement phase and a chiral-symmetry restoration phase and we derive the gap equation for the dynamical quark mass in the different phases. A detailed study of the gap equation reveals that the critical temperature at which chiral symmetry is restored is determined by the infrared regulator mass of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review, seeMarciano W. andPagels H.,Phys. Rep. C,36 (1978) 137.

    Article  ADS  Google Scholar 

  2. Polyakov A.,Phys. Lett. B,72 (1978) 477;Susskind L.,Phys. Rev. D,20 (1979) 2610.

    Article  MathSciNet  ADS  Google Scholar 

  3. Gross D., Pisarski R. andYaffe L.,Rev. Mod. Phys.,53 (1981) 43.

    Article  MathSciNet  ADS  Google Scholar 

  4. Shuryak E.,Phys. Rep. C,115 (1984) 151.

    Article  ADS  Google Scholar 

  5. For a list of references, seeDrouffe J. andItzykson C.,Phys. Rep.,38 (1978) 133;Kogut J.,Phys. Rep.,67 (1980) 67;Marinari E.,Phys. Rep.,184 (1989) 131. More recently,Guo S. et al., Phys. Rev. D,49 (1994) 507;Bernard C. et al., Phys. Rev. D,49 (1994) 1585;Kim S. andSinclair D.,Phys. Rev. D,48 (1993) 4408;Eletsky V. et al., Phys. Rev. D,48 (1993) 4398;Schramm S. andChu M.,Phys. Rev. D,48 (1993) 2279.

    Article  MathSciNet  ADS  Google Scholar 

  6. Pisarski R. andWilczek F.,Phys. Rev. D,29 (1984) 338;Cleymans J., Gavai R. andSuhonen E.,Phys. Rep. C,130 (1986) 217;Goksch A. andNeri F.,Phys. Rev. Lett.,50 (1983) 1099;Pisarski R.,Phys. Lett. B,110 (1982) 155.

    Article  ADS  Google Scholar 

  7. Barducci A. et al., Phys. Rev. D,46 (1992) 2203;49 (1994) 426. See alsoMishra A. et al., Z. Phys. C,57 (1993) 240.

    Article  ADS  Google Scholar 

  8. Shen K. andQiu Z.,Phys. Rev. D,48 (1993) 1801;Krive I.,Phys. Rev. D,46 (1992) 2737.

    Article  ADS  Google Scholar 

  9. Acharya R. andNarayana Swamy P.,Nuovo Cimento A,104 (1991) 521.

    Article  ADS  Google Scholar 

  10. Khalil S.,Nuovo Cimento A,107 (1994) 689.

    Article  ADS  Google Scholar 

  11. Deser S., Jackiw R. andTempleton S.,Ann. Phys.,140 (1982) 372.

    Article  MathSciNet  ADS  Google Scholar 

  12. Appelquist T., Bowick M., Karabali D. andWijewardhana L.,Phys. Rev. D,33 (1986) 3704;Appelquist T.,Prog. Theor. Phys. Suppl.,85 (1985) 244.

    Article  ADS  Google Scholar 

  13. Richardson J.,Phys. Lett. B,82 (1979) 272.

    Article  ADS  Google Scholar 

  14. Cornwall J., inGauge Theories, Massive Neutrinos and Proton Decay, edited byA. Perlmutter (Plenum Publ.) 1981, p. 141.

  15. Salam A.,Phys. Rev.,130 (1963) 1287;Delbourgo R. andWest P.,Phys. Lett. B,72 (1974) 3413; alsoJ. Phys. A,10 (1977) 1049.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Acharya R. andNarayana Swamy P.,Phys. Rev. D,26 (1982) 2797;Nuovo Cimento A,95 (1986) 229;98 (1987) 773.

    Article  ADS  Google Scholar 

  17. Ball J. andZachariasen F.,Phys. Lett. B,106 (1981) 133.

    Article  ADS  Google Scholar 

  18. Cornwall J.,Phys. Rev. D,26 (1982) 1453;King J.,Phys. Rev. D,27 (1983) 1821.

    Article  ADS  Google Scholar 

  19. Ball J. andChiu T.,Phys. Rev. D,22 (1980) 2542.

    Article  ADS  Google Scholar 

  20. Acharya R. andNarayana Swamy P.,Int. J. Mod. Phys. A,8 (1993) 59.

    Article  ADS  Google Scholar 

  21. Maris Th., Herscovitz V. andJacob G.,Phys. Rev. Lett.,12 (1964) 313.

    Article  MathSciNet  ADS  Google Scholar 

  22. See,e.g.,Dolan L. andJackiw R.,Phys. Rev. D,9 (1974) 3320.

    Article  ADS  Google Scholar 

  23. See,e.g.,Tsuei C.,Newns D.,Chi C. andPatnaik P.,Phys. Rev. Lett.,65 (1993) 2724.

    Article  ADS  Google Scholar 

  24. Acharya R. andNarayana Swamy P.,Int. J. Mod. Phys. A,8 (1993) 59.

    Article  ADS  Google Scholar 

  25. Mathematica, version 2.2 (Wolfram Research Inc., Champaign, Ill.) 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayana Swamy.

Additional information

The author of this paper has agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swamy, P.N. Broken chiral symmetry in 2+1 quantum chromodynamics at finite temperature. Nuov Cim A 109, 45–60 (1996). https://doi.org/10.1007/BF02734428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02734428

PACS

PACS

PACS

PACS

Navigation