Skip to main content
Log in

Blockade of GABAA receptors in the interpositus nucleus modulates expression of conditioned excitation but not conditioned inhibition of the eyeblink response

  • Papers
  • Published:
Integrative Physiological & Behavioral Science Aims and scope Submit manuscript

Abstract

The cerebellum and related brainstem structures are essential for excitatory eyeblink conditioning. Recent evidence indicates that the cerebellar interpositus and lateral pontine nuclei may also play critical roles in conditioned inhibition (CI) of the eyeblink response. The current study examined the role of GABAergic inhibition of the interpositus nucleus in retention of CI. Male Long-Evans rats were implanted with a cannula positioned just above or in the anterior interpositus nucleus before training. The rats were trained with two different tones and a light as conditioned stimuli, and a periorbital shock as the unconditioned stimulus. CI training consisted of four phases: 1) excitatory conditioning (8 kHz tone paired with shock); 2) feature-negative discrimination (2 kHz tone paired with shock or 2 kHz tone concurrent with light); 3) summation test (8 kHz tone or 8 kHz tone concurrent with light); and 4) retardation test (light paired with shock) After reaching a criterion level of performance on the feature-negative discrimination (40% discrimination), 0.5 μl picrotoxin (a GABAA receptor antagonist) was infused at one of four concentrations, each concentration infused during separte test sessions. Picrotoxin transiently impaired conditioned responses during trials with the excitatory stimulus (tone) in a dose-dependent manner, but did not significantly impact responding to the inhibitory compound stimulus (tone-light). The results suggest that expression of conditioned inhibition of the eyeblink conditioned response does not require GABAergic inhibition of neurons in the anterior interpositus nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizenman, C. D., & Linden, D. J. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of the deep nuclear neurons in slices of rat cerebellum.Journal of Neurophysiology, 82, 1697–1709.

    PubMed  Google Scholar 

  • Aizenman, C. D., & Linden, D. J. (2000). Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons.Nature Neuroscience, 3, 109–111.

    Article  PubMed  Google Scholar 

  • Albus, J.S. (1971). A theory of cerebellar function.Mathematical Biosciences, 10, 25–61.

    Article  Google Scholar 

  • Bao, S., Chen, L., Kim, J.J., & Thompson, R.F. (2002). Cerebellar cortical inhibition and classical eyeblink conditioning.Proceedings of the National Academy of Sciences, 99, 1592–1597.

    Article  Google Scholar 

  • Berthier, N. E., & Moore, J.W. (1980). Disrupted conditioned inhibition of the rabbit nictiating membrane response following mesencephalic lesions.Physiology and Behavior, 25, 667–673.

    Article  PubMed  Google Scholar 

  • Blazis, D. E. J., & Moore, J. W. (1991). Conditioned inhibition of the nictitating membrane response in rabbits following hypothalamic and mesencephalic lesions.Behavioral Brain Research, 46, 71–81.

    Article  Google Scholar 

  • Border, B. G., Kosinski, R. J., Azizi, S. A., & Mihailoff, G. A. (1986). Certain basilar pontine afferent systems are GABA-ergic: combined HRP and immunocytochemical studies in the rat.Brain Research Bulletin, 17, 169–179.

    Article  PubMed  Google Scholar 

  • Border, B., & Mihailoff, G. A. (1985). GAD-immunoreactive neural elements in the basilar pontine nuclei and nucleus reticularis tegmenti pontis of the rat. I. Light microscopic studies.Experimental Brain Research, 59, 600–614.

    Article  Google Scholar 

  • Britton, G., Brown, T. C., & Steinmetz, J. E. (2000). Single-unit activity from interpositus nucleus during conditioned inhibition of the eyeblink response.Society for Neuroscience Abstracts.

  • Brown, T. C., Britton, G., & Steinmetz, J. E. (2000). The role of red nucleus in conditioned inhibition of the rabbit eyeblink response.Society for Neuroscience Abstracts.

  • Chapman, P. F., Steinmetz, J. E., Sears, L. L., & Thompson, R. F. (1990). Effects of lidocaine injection in the interpositus nucleus and the red nucleus on conditioned behavioral and neuronal responses.Brain Research, 537, 149–156.

    Article  PubMed  Google Scholar 

  • Chen, C., & Thompson, R. F. (1995). Temporal specificity of long-term depression in parallel fiber-Purkinje synapses in rat cerebellar slice.Learning & Memory, 2, 185–98.

    Article  Google Scholar 

  • Choi, J. S. (1999). Classical eyeblink conditioning with mixed interstimulus intervals: temporal integration of response topography and neuronal correlates.Doctoral Dissertation, University of Massachusetts.

  • Clark, R. E., & Lavond, D. G. (1993). Reversible lesions of the red nucleus during acquisition and retention of a classically conditioned behavior in rabbits.Behavioral Neuroscience, 107, 264–270.

    Article  PubMed  Google Scholar 

  • Desmond, J. E., Rosenfield, M. E., & Moore, J. W. (1983). An HRP study of the brainstem afferents to the accessory abducens region and dorsolateral pons in rabbit: Implications for the study of the conditioned nictitating membrane response.Brain Research Bulletin, 10, 747–763.

    Article  PubMed  Google Scholar 

  • De Zeeuw, C. I., Van Alphen, A. M., Hawkins, R. K., & Ruigrok, T. J. (1997). Climbing fiber collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive.Neuroscience, 80, 981–986.

    Article  PubMed  Google Scholar 

  • Falls, W. A., Bakken, K. T., & Heldt, S. C. (1997). Lesions of the perirhinal cortex interfere with conditioned excitation but not with conditioned inhibition of fear.Behaviorla Neuroscience, 111, 476–486.

    Article  Google Scholar 

  • Falls, W. A., & Davis, M. (1995). Lesions of the central nucleus of the amygdala block conditioned excitation, but not conditioned inhibition of fear as measured with the fear-potentiated startle effect.Behavioral Neuroscience, 109, 379–387.

    Article  PubMed  Google Scholar 

  • Fanardjian, V. V., & Manvelyan, L. R. (1987). Mechanisms regulating the activity of facial nucleus motoneurons—IV. Influences from the brainstem structures.Neuroscience, 20, 845–853.

    Article  PubMed  Google Scholar 

  • Foy, M. R., Krupa, D. J., Tracy, J., & Thompson, R. F. (1992). Analysis of single unit recordings from cerebellar cortex of classically conditioned rabbits.Society for Neuroscience Abstracts, 18, 1215.

    Google Scholar 

  • Freeman, A. R. (1973). Electrophysiological analysis of the actions of strychnine, bicuculline and picrotoxin on the axonal membrane.Journal of Neurobiology, 4, 567–582.

    Article  PubMed  Google Scholar 

  • Freeman, J. H. Jr., & Nicholson, D. A. (1999). Neuronal activity in the cerebellar interpositus and lateral pontine nuclei during inhibitory classical coditioning of the eyeblink response.Brain Research, 833, 225–233.

    Article  PubMed  Google Scholar 

  • Freeman, J. H. Jr., Shi, T., & Schreurs, B. G. (1998). Pairing-specific long-term depression prevented by blockade of PKC or intracellular CA2+.NeuroReport, 9, 2237–2241.

    Article  PubMed  Google Scholar 

  • Gewirtz, J. C., Falls, W. A., & Davis, M. (1997). Normal conditioned inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medial prefrontal cortex in rats.Behavioral Neuroscience, 111, 712–726.

    Article  PubMed  Google Scholar 

  • Gilbert, P. F., & Thach, W. T. (1977). Purkinje cell activity during motor learning.Brain Research, 128 309–328.

    Article  PubMed  Google Scholar 

  • Gould, T. J., & Steinmetz, J. E. (1996). Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisition, extinction, and backward classical eyelid conditioning.Neurobiology of Learning and Memory, 65, 17–34.

    Article  PubMed  Google Scholar 

  • Gould, T. J., Sears, L. L., & Steinmetz, J. E. (1993). Possible CS and US pathways for rabbit classical eyelid conditioning: Electrophysiological evidence for projections from the pontine nuclei and inferior olive to cerebellar cortex and nuclei.Behavioral and Neural Biology, 60, 172–185.

    Article  PubMed  Google Scholar 

  • Gluck, M. A., Reifsnider, E. S., & Thompson, R. F. (1990). Adaptive signal processing and the cerebellum: Models of classical conditioning and VOR adaptation. In M. A. Gluck & D. E. Rumelhart (Eds.).Neuroscience and connectionist theory (pp. 131–185). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Hardiman, M. J., Ramnani, N., & Yeo, C. H. (1996). Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit.Experimental Brain Research, 110, 235–247.

    Article  Google Scholar 

  • Heldt, S. A., Falls, W. A., & Coover, G. D. (2000). NMDA lesions of the auditory thalamus attenuate expression of conditioned inhibition of fear-potentiated startle.Society for Neuroscience Abstracts.

  • Hesslow, G. (1994). Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex.Journal of Physiology, 476, 229–244.

    PubMed  Google Scholar 

  • Hesslow, G., & Ivarsson, M. (1994). Suppression of cerebellar Purkinje cells during conditioned responses in ferrets.NeuroReport, 5, 649–652.

    Article  PubMed  Google Scholar 

  • Holstege, G., Tan, J., van Ham, J., & Bos, A. (1984). Mesencephalic projections to the facial neucleus in the cat. An autoradiographical tracing study.Brain Research, 311, 7–22.

    Article  PubMed  Google Scholar 

  • Isokawa-Akesson, M., & Komisaruk, B. R. (1987). Difference in projections to the lateral and medial facial nucleus: anatomically separate pathways for rhythmical vibrissa movement in rats.Experimental Brain Research, 65, 385–398.

    Article  Google Scholar 

  • Katz, D. B., Tracy, J. A., & Steinmetz, J. E. (2001). Rabbit classical eyeblink conditioning is altered by brief cerebellar cortical stimulation.Physiology and Behavior, 72, 499–510.

    Article  PubMed  Google Scholar 

  • Kim, J. J., & Thompson, R. F. (1997). Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning.Trends in Neuroscience, 20, 177–181.

    Article  Google Scholar 

  • Krupa, D. J., & Thompson, R. F. (1995). Inactivation of the superior cerebellar peduncle blocks expression but not acquisition of the rabbit's classically conditioned eyeblink response.Proceedings of the National Academy of Science USA, 92, 5097–5101.

    Article  Google Scholar 

  • Krupa, D. J., Thompson, J. K., & Thompson, R. F. (1993). Localization of a memory trace in the mammalian brain.Science, 260, 989–991.

    Article  PubMed  Google Scholar 

  • Krupa, D. J., Weng, J., & Thompson, R. F. (1996). Inactivation of brainstem motor nuclei blocks expression but not acquisition of the rabbit's classically conditioned eyeblink response.Behavioral Neuroscience, 110, 219–227.

    Article  PubMed  Google Scholar 

  • Lavond, D. G., Kim, J. J., & Thompson, R. F (1993). Mammalian brain substrates of aversive classical conditioning.Annual Review of Psychology, 44, 317–342.

    Article  PubMed  Google Scholar 

  • Lewis, J. L., LoTurco, J. J., & Solomon, P. R. (1987). Lesions of the middle cerebellar peduncle disrupt acquisition and retention of the the rabbit's classically conditioned nictitating membrane response.Behavioral Neuroscience, 101, 151–157.

    Article  PubMed  Google Scholar 

  • Logan, C. G. (1991). Cerebellar cortical involvement in excitatory and inhibitory classical conditioning.Doctoral Dissertation, Stanford University.

  • Mamounas, L. A., Thompson, R. F., & Madden, J. IV (1987). Cerebellar GABAergic processes: Evidence for critical involvement in a form of simple associative learning in the rabbit.Proceedings of the National Academy of Science USA, 84, 2101–2105.

    Article  Google Scholar 

  • Marchant, H. G., Mis, F. W., & Moore, J. W. (1972). Conditioned inhibition of the rabbit's nictiating membrane response.Journal of Experimental Psychology, 95, 408–411.

    Article  PubMed  Google Scholar 

  • Mauk, M. D. (1997). Roles of cerebellar cortex and nuclei in motor learning: Contradictions or clues?.Neuron, 18, 343–346.

    Article  PubMed  Google Scholar 

  • Mauk, M. D., & Donegan, N. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum.Learning and Memory, 4, 130–158.

    Article  PubMed  Google Scholar 

  • Mauk, M. D., Garcia, K. S., Medina, J. F., & Steele, P. M. (1998). Does cerebellar LTD mediate motor learning? Toward a resolution without a smoking gun.Neuron, 20, 359–362.

    Article  PubMed  Google Scholar 

  • Mauk, M. D., Steinmetz, J. E., & Thompson, R. F. (1986). Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus.Proceeding of the National Academy of Science USA, 83, 5349–5353.

    Article  Google Scholar 

  • McCormick, D. A., Guyer, P. E., & Thompson, R. F. (1982). Superior cerebellar peduncle lesions selectively abolish the ipsilateral classically conditioned nictitating membrane/eyelid response of the rabbit.Brain Research, 244, 347–350.

    Article  PubMed  Google Scholar 

  • McCormick, D. A., Steinmetz, J. E., Thompson, R. F. (1985). Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response.Brain Research, 359, 120–130.

    Article  PubMed  Google Scholar 

  • McCormick, D. A., & Thompson, R. F. (1984). Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response.Journal of Neuro-science, 11, 2811–2822.

    Google Scholar 

  • McIntosh, A.R., & Gonzalez-Lima, F. (1993). Network analysis of functional auditory pathways mapped with fluorodeoxyglucose: Associative effects of a tone conditioned as a Pavlovian excitor or inhibitor.Brain Research, 627, 129–140.

    Article  PubMed  Google Scholar 

  • McIntosh, A. R., & Gonzalez-Lima, F. (1994). Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor of inhibitor: Fluorodeoxyglucose mapping and covariance structural modeling.Journal of Neurophysiology, 72, 1717–1733.

    PubMed  Google Scholar 

  • McIntosh, A. R., & Gonzalez-Lima, F. (1995). Functional network interactions between parallel auditory pathways during Pavlovian conditioned inhibition.Brain Research, 683, 228–241.

    Article  PubMed  Google Scholar 

  • Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., & Mauk, M. D. (2000). Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation.Journal of Neuroscience, 20, 5516–5525.

    PubMed  Google Scholar 

  • Medina, J. F., & Mauk, M. D. (2000). Computer simulation of cerebellar information processing.Nature Neuroscience, 3, 1205–1211.

    Article  PubMed  Google Scholar 

  • Mis, F. W., (1977). A midbrain-brainstem circuit for conditioned inhibition of the nictitating membrane response in the rabbit (Oryctolagus cuniculus).Journal of Comparative and Physiological Psychology, 91, 975–988.

    Article  Google Scholar 

  • Moore, J. W., & Choi, J-S (1997). Conditioned response timing and integration in the cerebellum.Learning & Memory, 4, 116–129.

    Article  Google Scholar 

  • Moore, J. W., Yeo, C. H., Oakley, D. A., & Russell, I. S. (1980). Conditioned inhibition of the nictitating membrane response in decorticate rabbits.Behavioral Brain Research, 1, 397–409.

    Article  Google Scholar 

  • Nicholson, D. A. & Freeman, J. H., Jr. (2002). Neuronal correlates of conditioned inhibition of the eyeblink response in the anterior interpositus nucleus.Behavioral Neuroscience, 116, 22–36.

    Article  PubMed  Google Scholar 

  • Nores, W. L., Medina, J. F., Steele, P. M., & Mauk, M. D. (2000). Relative contributions of cerebellar cortex and cerebellar nucleus to eyelid conditioning. In D. S. Woodruff-Pak, & J. E. Steinmetz (Eds.),Eyeblink Classical Conditioning: Animal, (pp. 179–204). Amsterdam: Kluwer.

    Google Scholar 

  • Pavlov, I. P. (1927).Conditioned reflexes. London: Oxford University Press.

    Google Scholar 

  • Paxinos, G. & Watson, C. (1998).The rat brain in stereotaxic coordinates (4thed.). New York, NY: Academic Press.

    Google Scholar 

  • Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: variations in the effectiveness of conditioned but not unconditioned stimuli.Psychological Review, 87, 523–552.

    Article  Google Scholar 

  • Racine, R. J., Wilson, D. A., Gingell, R., & Sunderland, D. (1986). Long-term potentiation in the interpositus and vestibular nuclei in the rat.Experimental Brain Research, 63, 158–162.

    Article  Google Scholar 

  • Rescorla, R. A. (1969). Pavlovian conditioned inhibition.Psychological Bulletin, 72, 77–94.

    Article  Google Scholar 

  • Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.),Classical Conditioning II: Current Research and Theory (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Ribak, C. E., & Peters, A. (1975). An autoradiographic study of the projections from the lateral geniculate body of the rat.Brain Research, 92, 341–368.

    Article  PubMed  Google Scholar 

  • Rosenfield, M. E., & Moore, J. W. (1983). Red nucleus lesions disrupt the classically conditioned nictitating membrane response in rabbits.Behavioral Brain Research, 10, 393–398.

    Article  Google Scholar 

  • Sakurai, M. (1987). Synaptic modification of parallel fiber-Purkinje cell transmission in in vitro guinea-pig cerebellar slices.Journal of Physiology, 394, 463–480.

    PubMed  Google Scholar 

  • Salin, P. A., Malenka, R. C., & Nicoll, R. A. (1996). Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses.Neuron, 16, 797–803.

    Article  PubMed  Google Scholar 

  • Schreurs, B. G. (2000). Cellular correlates of eyeblink classical conditioning. In D. S. Woodruff-Pak, & J. E. Steinmetz (Eds.),Eyeblink Classical Conditioning: Animal, (pp. 179–204). Amsterdam: Kluwer.

    Google Scholar 

  • Schreurs, B. G., Gusev, P. A., Tomsic, D., Alkon, D. L., & Shi, T. (1998). Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI.Journal of Neuroscience, 18, 5498–5507.

    PubMed  Google Scholar 

  • Schreurs, B. G., Oh, M. M., & Alkon, D. L. (1996). Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice.Journal of Neurophysiology, 75, 1051–1060.

    PubMed  Google Scholar 

  • Schreurs, B. G., Sanchez-Andres, J. V., & Alkon, D. L. (1991). Learning-specific differences in Purkinje-cell dendrites of lobule HVI (lobulus simplex): intracellular recording in a rabbit cerebellar slice.Brain Research, 548, 18–22.

    Article  PubMed  Google Scholar 

  • Schreurs, B. G., Tomsic, D., Gusev, P. A., & Alkon, D. L. (1997). Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit's nictitating membrane response.Journal of Neurophysiology, 77, 86–92.

    PubMed  Google Scholar 

  • Solomon, P. R. (1977). Role of the hippocampus in blocking and conditioned inhibition of the rabbit's nictitating membrane response.Journal of Comparative and Physiological Psychology, 91, 407–417.

    Article  PubMed  Google Scholar 

  • Solomon, P. R., Lewis, J. L., LoTurco, J. J., Steinmetz, J. E., & Thompson, R. F. (1986). The role of the middle cerebellar preducle in acquisition and retention of the rabbit's classically conditioned nictitating membrane response.Bulletin of the Psychonomic Society, 24, 75–78.

    Google Scholar 

  • Steinmetz, J. E. (1990). Neuronal activity in the rabbit interpositus nucleus during classical NM-conditiong with a pontine-nucleus-stimulation CS.Psychological Science, 1, 378–382.

    Article  Google Scholar 

  • Steinmetz, J. E., Lavond, D. G., Ivkovich, D., Logan, C. G., & Thompson, R. F. (1992). Disruption of classical eyelid conditioning after cerebellar lesions: Damage to a memory trace system or simple performance deficit?.Journal of Neuroscience, 12, 4403–4426.

    PubMed  Google Scholar 

  • Steinmetz, J. E., Lavond, D. G., & Thompson, R. F. (1985). Classical conditioning of the rabbit eyelid response with mossy fiber stimulation as the conditioned stimulus.Bulletin of the Psychonomic Society, 23, 245–248.

    Google Scholar 

  • Steinmetz, J. E., Lavond, D. G., & Thompson, R. F. (1989). Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus.Synapse, 3, 225–233.

    Article  PubMed  Google Scholar 

  • Steinmetz, J. E., Logan, C. G., Rosen, D. J., Thompson, J. K., Lavond, D. G, & Thompson, R. F. (1987). Initial localization of the acoustic conditioned stimulus projection system to the cerebellum essential for classical eyelid conditioning.Proceeding of the National Academy of Science USA, 84, 3531–3535.

    Article  Google Scholar 

  • Steinmetz, J. E., Rosen, D. J., Chapman, P. F., Lavond, D. G., & Thompson, R. F. (1986). Classical conditioning of the rabbit eyelid response with a mossy fiber stimulation CS. I. Pontine nuclei and middle cerebellar peduncle stimulation.Behavioral Neuroscience, 100, 878–887.

    Article  PubMed  Google Scholar 

  • Takada, M., Itoh, K., Yasui, Y., Mitani, A., Nomura, S., & Mizuno, N. (1984). Distribution of premotor neurons for orbicularis oculi motoneurons in the cat, with particular references to possible pathways for blink reflex.Neuroscience Letters, 50, 251–255.

    Article  PubMed  Google Scholar 

  • Thompson, R. F. (2000). Discovering the brain substrates of eyeblink classical conditiong. In D. S. Woodruff-Pak, & J. F. Steinmetz (Eds.),Eyeblink Classical conditioning: Animal (pp. 17–49). Amsterdam: Kluwer.

    Google Scholar 

  • Thompson, R. F., & Krupa, D. J. (1994). Organization of memory traces in the mammalian brain.Annual Review of Neuroscience, 17, 519–549.

    Article  PubMed  Google Scholar 

  • Tracy, J. A., Thompson, J. K., Krupa, D. J., & Thompson, R. F. (1998). Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit.Behavioral Neuroscience, 112, 267–285.

    Article  PubMed  Google Scholar 

  • Waddell, J., Pistell, P. J. Heldt, S. A., & Falls, W. A. (2000). The effect of lesions of the superior colliculus of the elicitation and reduction of fear-potentiated startle.Society for Neuroscience Abstracts.

  • Wells, G. R., Hardiman, M. J., & Yeo, C. H. (1989). Visual projections to the pontine nuclei in the rabbit: orthograde and retrograde tracing studies with WGA-HRP.Journal of Comparative Neurology, 279, 629–652.

    Article  PubMed  Google Scholar 

  • Yeo, C. H., Hardiman, M. J., & Glickstein, M. (1986). Classically conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive.Experimental Brain research, 63, 81–92.

    Article  Google Scholar 

  • Yeo, C. H., Hardiman, M. J., Moore, J. W., & Russell, I. S. (1983). Retention of conditioned inhibition of the nictitating membrane response in decorticate rabbits.Behavioral Brain Research, 10, 383–392.

    Article  Google Scholar 

  • Yeo, C. H., & Hesslow, G. (1998). Cerebellum and conditioned reflex.Trends in Cognitive Science, 2, 322–330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Freeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolan, B.C., Nicholson, D.A. & Freeman, J.H. Blockade of GABAA receptors in the interpositus nucleus modulates expression of conditioned excitation but not conditioned inhibition of the eyeblink response. Integrative Physiological & Behavioral Science 37, 293–310 (2002). https://doi.org/10.1007/BF02734250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02734250

Keywords

Navigation