Skip to main content
Log in

Eyeblink classical conditioning differentiates normal aging from Alzheimer’s disease

  • Papers
  • Published:
Integrative Physiological & Behavioral Science Aims and scope Submit manuscript

Abstract

Eyeblink classical conditioning is a useful paradigm for the study of the neurobiology of learning, memory, and aging, which also has application in the differential diagnosis of neurodegenerative diseases expressed in advancing age. Converging evidence from studies of eyeblink conditioning in neurological patients and brain imaging in normal adults document parallels in the neural substrates of this form of associative learning in humans and non-human mammals. Age differences in the short-delay procedure (400 ms CS-US interval) appear in middle age in humans and may be caused at least in part by cerebellar cortical changes such as loss of Purkinje cells. Whereas the hippocampus is not essential for conditioning in the delay procedure, disruption of hippocampal cholinergic neurotransmission impairs acquisition and slows the rate of learning. Alzheimer’s disease (AD) profoundly disrupts the hippocampal cholinergic system, and patients with AD consistently perform poorly in eyeblink conditioning. We hypothesize that disruption of hippocampal cholinergic pathways in AD in addition to age-associated Purkinje cell loss results in severely impaired eyeblink conditioning. The earliest pathology in AD occurs in entorhinal cortical input to hippocampus, and eyeblink conditioning may detect this early disruption before declarative learning and memory circuits become impaired. A case study is presented in which eyeblink conditioning detected impending dementia six years before changes on other screening tests indicated impairment. Because eyeblink conditioning is simple, non-threatening, and non-invasive, it may become a useful addition to test batteries designed to differentiate normal aging from mild cognitive impairment that progresses to AD and AD from other types of dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, B. J. & Steinmetz, J. E. (1994). Cerebellar and brainstem circuits involved in classical eyeblink conditioning.Review of Neuroscience, 5, 251–273.

    Article  Google Scholar 

  • Bartus, R. T. (2000). On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis.Experimental Neurology, 163, 495–529.

    Article  PubMed  Google Scholar 

  • Berger, T. W. & Thompson, R. F. (1978). Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. I. The hippocampus.Brain Research, 145, 323–346.

    Article  PubMed  Google Scholar 

  • Blaxton, T. A., Zeffiro, T. A., Gabrieli, J. D. E., Bookheimer, S. Y., Carrillo, M. C., Theodore, W. H., & Disterhoft, J. F. (1996). Functional mapping of human learning: A positron-emission tomography study of eyeblink conditioning.Journal of Neuroscience, 16, 4032–4040.

    PubMed  Google Scholar 

  • Braun, H. W. & Geiselhart, R. (1959). Age differences in the acquisition and extinction of the conditioned eyelid response.Journal of Experimental Psychology, 57, 386–388.

    Article  PubMed  Google Scholar 

  • Chen, L., Bao, S., Lockard, J. M., Kim, J. J., & Thompson, R. F. (1996). Impaired classical eyeblink conditioning in cerebellar lesioned and Purkinje cell degeneration (pcd) mutant mice.Journal of Neuroscience, 16, 2829–2838.

    PubMed  Google Scholar 

  • Clark, R. E. & Squire, L. R. (1998). Classical conditioning and brain systems: The role of awareness.Science, 280, 77–81.

    Article  PubMed  Google Scholar 

  • Clark, R. E. & Zola, S. (1998). Trace eyeblink classical conditioning in the monkey: A nonsurgical method and behavioral analysis.Behavioral Neuroscience, 112, 1062–1068.

    Article  PubMed  Google Scholar 

  • Cohen, N. J. & Squire, L. R. (1980). preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of “knowing how” and “knowing that”.Science, 210, 207–209.

    Article  PubMed  Google Scholar 

  • Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Harwood, M., Hinds, S., & Press, G. A. (2000). Normal brain development and aging: Quantitative analysis atin vivo MR imaging in healthy volunteers.Radiology,216, 672–682.

    PubMed  Google Scholar 

  • Daum, I., & Schugens, M. M. (1996). On the cerebellum and classical conditioning.Current Directions in Psychological Science, 5, 58–61.

    Article  Google Scholar 

  • Daum, I., Schugens, M. M., Ackermann, H., Lutzenberger, W., Dichgans, J., & Birbaumer, N. (1993). Classical conditioning after cerebellar lesions in humans.Behavioral Neuroscience, 107, 748–756.

    Article  PubMed  Google Scholar 

  • Daum, I., Schugens, M. M., Breitenstein, C., Topka, H., & Spieker, S. (1996). Classical eyeblink conditioning in Parkinson’s disease.Movement Disorders, 11, 639–646.

    Article  PubMed  Google Scholar 

  • Downey-Lamb, M. M. & Woodruff-Pak, D. S. (1999). Early detection of cognitive deficits using eyeblink classical conditioning.Alzheimer’s Reports, 2, 37–44.

    Google Scholar 

  • Downey-Lamb, M. M. & Woodruff-Pak, D. S. (2000) Impairment in the delay eyeblink conditioning paradigm predicts cognitive decline and shortened life expectancy.Society for Neuroscience Abstracts, 26, 530.

    Google Scholar 

  • Durkin, M., Prescott, L., Furchtgott, E., Cantor, J., & Powell, D. A. (1993). Concomitant eyeblink and heart rate classical conditioning in young, middle-aged, and elderly human subjects.Psychology and Aging, 8, 571–581.

    Article  PubMed  Google Scholar 

  • Escalona, P. R., McDonald, W. M., Doraiswamy, P. M., Boyko, O. B., Husain, M. M., Figiel, G. S., Laskowitz, D., Ellinwood, E. H., & Krishnan, K. R. R. (1991).In vivo stereological assessment of human cerebellar volume: Effects of gender and age.American Journal of Neuroradiology, 12, 927–929.

    PubMed  Google Scholar 

  • Ferrante, L. S. & Woodruff-Pak, D. S. (1995). Longitudinal investigation of eyeblink classical conditioning in the old-old.Journal of Gerontology: Psychological Science, 50B, P42–50.

    Article  Google Scholar 

  • Flicker, C., Ferris, S. H., Riesberg, B. (1991). Mild cognitive impairment in the elderly: Predictors of dementia.Neurology, 41, 1006–1009.

    PubMed  Google Scholar 

  • Gabrieli, J. D. E., McGlinchey-Berroth, R., Carrillo, M. C., Gluck, M. A., Cermak, L. S., & Disterhoft, J. F. (1995). Intact delay-eyeblink classical conditioning in amnesia.Behavioral Neuroscience, 109, 819–827.

    Article  PubMed  Google Scholar 

  • Gomez-Isla, T., Price, J. L., McKeel, D. W., Morris, J., Growdon, J., & Hyman, B. T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease.Journal of Neuroscience, 16, 4491–4500.

    PubMed  Google Scholar 

  • Graf, P. (1990). Life-span changes in implicit and explicit memory.Bulletin of the Psychonomic Society, 28, 353–358.

    Google Scholar 

  • Green, J. T., Ivry, R. B., & Woodruff-Pak, D. S. (1999). Timing in eyeblink classical conditioning and timed-interval tapping.Psychological Science, 10, 20–24.

    Google Scholar 

  • Green, J. T., & Woodruff-Pak, D. S. (2000). Eyeblink classical conditioning: Hippocampal formation is for neutral stimulus associations as cerebellum is for association-response.Psychological Bulletin, 126 138–158.

    Article  PubMed  Google Scholar 

  • Green, J. T., Woodruff-Pak, D. S., & Ivry, R. B. (2000). Dual-task and repeated measurement designs: Utility in assessing timing in eyeblink conditioning (pp. 95–117). In D. S. Woodruff-Pak & J. E. Steinmetz (Eds.),Eyeblink classical conditioning: Volume 1, Applications in humans. Boston: Kluwer.

    Google Scholar 

  • Hall, T. C., Miller, K. H., & Corsellis, J. A. N. (1975). Variations in the human Purkinje cell population according to age and sex.Neuropathology and Applied Neurobiology, 1, 267–292.

    Article  Google Scholar 

  • Ivry, R. & Keele, S. W. (1989). Timing functions of the cerebellum.Cognitive Neuroscience, 1, 134–150.

    Google Scholar 

  • Ivry, R., Keele, S. W., & Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution.Experimental Brain Research, 73, 167–180.

    Article  Google Scholar 

  • Jerome, E. A. (1959). Age and learning—Experimental studies. In J. E. Birren (Ed.),Handbook of aging and the individual (pp. 655–699). Chicago: University of Chicago Press.

    Google Scholar 

  • Keele, S. W. & Ivry, R. (1990). Does the cerebellum provide a common computation for diverse tasks: A timing hypothesis. In A. Diamond (Ed.)The development and neural bases of higher cognitive functions (pp. 179–211). New York: New York Academy of Sciences Press.

    Google Scholar 

  • Kennard, M. (1998). Diagnostic markers for Alzheimer’s disease.Neurobiology of Aging, 19, 131–132.

    Article  PubMed  Google Scholar 

  • Kimble, G. A. & Pennypacker, H. S. (1963). Eyelid conditioning in young and aged subjects.Journal of Genetic Psychology, 103, 283–289.

    PubMed  Google Scholar 

  • Larsell, O. (1970). Rabbit. In J. Jansen (Ed.).The comparative anatomy and histology of the cerebellum from monotremes through apes. Minneapolis. University of Minnesota Press.

    Google Scholar 

  • Larsell, O. & Jansen, J. (1972).The comparative anatomy and histology of the cerebellum: The human cerebellum, cerebellar connections, and cerebellar cortex. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Lavond, D. G., Kim, J. J., & Thompson, R. F. (1993). Mammalian brain substrates of aversive classical conditioning.Annual Review of Psychology, 44, 317–342.

    Article  PubMed  Google Scholar 

  • Lemieux, S. K. & Woodruff-Pak, D. S. (2000). Functional magnetic resonance imaging studies of eyeblink classical conditioning (pp. 71–93). In D. S. Woodruff-Pak & J. E. Steinmetz (Eds.),Eyeblink classical conditioning: Volume I, Applications in humans. Boston: Kluwer.

    Google Scholar 

  • Light, L. L. & La Voie, D. (1993). Direct and indirect measures of memory in old age. In P. Graf & M. E. J. Masson (Eds.).Implicit memory (pp. 207–230). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Logan, C. G. & Grafton, S. T. (1995). Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolism and positron emission tomography.Proceedings of the National Academy of Science, USA, 92, 7500–7504.

    Article  Google Scholar 

  • Luft, A. R., Skalej, M., Welte, D., Kolb, R., Burk, K., Schulz, J. B., Klockgether, T., & Voigt, K. (1998). A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI.Magnetic Resonance in Medicine, 40, 143–151.

    Article  PubMed  Google Scholar 

  • Luft, A. R., Skalej, M., Schulz, J. B., Welte, D., Kolb, R., Burk, K., Klockgether, T., & Voigt, K. (1999). Patterns of age-related shrinkage in cerebellum and brainstem observedin vivo using three-dimensional MRI volumetry.Cerebral Cortex, 9, 712–721.

    Article  PubMed  Google Scholar 

  • Lye, R. H., O’Boyle, D. J., Ramsden, R. T., & Schady, W. (1988). Effects of a unilateral cerebellar lesion on the acquisition of eye-blink conditioning in man.Journal of Physiology (London), 403, 58 P.

    Google Scholar 

  • Mauk, M. D. & Donegan, N. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum.Learning and Memory, 3, 130–158.

    Article  Google Scholar 

  • McCormick, D. A., Lavond, D. G., Clark, G. A., Kettner, R. E., Rising, C. E., & Thompson, R. F. (1981). The rabbit nictitating membrane and eyelid responses: Correlations and implications.Physiological Behavior,28, 769–775.

    Article  Google Scholar 

  • Molchan, S. E., Sunderland, T., McIntosh, A. R., Herscovitch, P. & Schreurs, B. G. (1994). A functional anatomical study of associative learning in humans.Proceedings of the National Academy of Science USA, 91, 8122–8126.

    Article  Google Scholar 

  • Moore, J. W., Goodell, N. A., & Solomon, P. R. (1976). Central cholinergic blockade by scopolamine and habituation, classical conditioning, and latent inhibition of the rabbit’s nictitating membrane response.Physiological Psychology, 4, 395–399.

    Google Scholar 

  • Moyer, J. R., Deyo, R. A., & Disterhoft, J. F. (1990). Hippocampectomy disrupts trace eye-blink conditioning in rabbits.Behavioral Neuroscience, 104, 243–252.

    Article  PubMed  Google Scholar 

  • Nairn, J. G., Bedi, K. S., Mayhew, T. M., & Campbell, L. F. (1989). On the number of Purkinje cells in the human cerebellum: Unbiased estimates obtained by using the ‘fractionator.’Journal of Comparative Neurology, 290, 527–532.

    Article  PubMed  Google Scholar 

  • Oguro, H., Okada, K., Yamaguchi, S., & Kobayashi, S. (1998). Sex differences in morphology of the brain stem and cerebellum with normal ageing.Neuroradiology, 40, 788–792.

    Article  PubMed  Google Scholar 

  • Papka, M., Ivry, R. B., & Woodruff-Pak, D. S. (1995). Selective disruption of eyeblink classical conditioning by concurrent tapping.NeuroReport, 6, 1493–1497.

    Article  PubMed  Google Scholar 

  • Papka, M., Simon, E. W., & Woodruff-Pak, D. S. (1994). A one-year longitudinal investigation of eyeblink classical conditioning and cognitive and behavioral tests in adults with Down’s syndrome.Aging and Cognition, 1, 89–104.

    Article  Google Scholar 

  • Parisi, J. E., Dickson, D. W., Johnson, K. A., Ivnik, r. J., Smith, G. E., Tangalos, E. G., Kokmen, E., Petersen, R. C. (2000). Neuropathological substrate of mild cognitive impairment.World Alzheimer Congress 2000 Abstracts, Abstract 900.

  • Patterson, M. M., Olah, J., & Clement, J. (1977). Classical nictitating membrane conditioning in the awake, normal, restrained cat.Science, 196, 1124–1126.

    Article  PubMed  Google Scholar 

  • Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome.Archives of Neurology, 56, 303–314.

    Article  PubMed  Google Scholar 

  • Ramnani, N., Toni, I., Josephs, J., Ashburner, J., & Passingham, R. E. (2000). Learning- and expectation-related changes in the human brain during motor learning.Journal of Neurophysiology,84, 3026–3035.

    PubMed  Google Scholar 

  • Raz, N., Dupuis, J. H., Briggs, S. D., McGavran, C., & Acker, J. D. (1998). Differential effects of age and sex on the cerebellar hemispheres and the vermis: A prospective MR study.American Journal of Neuroradiology, 19, 65–71.

    PubMed  Google Scholar 

  • Raz, N., Torres, I. J., Spencer, W. D., White, K., & Acker, J. D. (1992). Age-related regional differences in cerebellar vermis observedin vivo.Archives of Neurology, 49, 412–416.

    PubMed  Google Scholar 

  • Rhyu, J., Cho, T. H., Lee, N. J., Uhm, C.-S., Kim, H., & Suh, Y.-S. (1999). Magnetic resonance image-based cerebellar volumetry in healthy Korean adults.Neuroscience Letters, 270, 149–152.

    Article  PubMed  Google Scholar 

  • Salat, D., Ward, A., Kaye, J. A., & Janowsky, J. S. (1997). Sex differences in the corpus callosum with aging.Neurobiology of Aging, 18, 191–197.

    Article  PubMed  Google Scholar 

  • Scheibel, A. B. (1996). Structural and functional changes in the aging brain. In J. E. Birren & K. W. Schaie (Eds.),Handbook of the psychology of aging (4th ed., pp. 105–128). San Diego: Academic Press.

    Google Scholar 

  • Schmajuk, N. A., Lam, Y. W., & Christiansen, B. A. (1993). Hippocampectomy disrupts latent inhibition of rat eyeblink conditioning.Physiology & Behavior, 55, 597–601.

    Article  Google Scholar 

  • Schmaltz, L. W., & Theios, J. (1972). Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus).Journal of Comparative and Physiological Psychology, 79, 328–333.

    Article  PubMed  Google Scholar 

  • Skelton, R. S. (1988). Bilateral cerebellar lesions disrupt conditioned eyelid responses in unrestrained rats.Behavioral Neuroscience, 102, 586–590.

    Article  PubMed  Google Scholar 

  • Smith, G. C., Petersen, R. C., Parisi, J. E. et al. (1996). Definition, course and outcome of mild cognitive impairment.Aging Neuropsychology, and Cognition, 3, 141–147.

    Article  Google Scholar 

  • Solomon, P. R., Levine, E., Bein, T., & Pendlebury, W.W. (1991). Disruption of classical conditioning in patients with Alzheimer’s disease.Neurobiology of Aging, 12, 283–287.

    Article  PubMed  Google Scholar 

  • Solomon, P. R., Pomerleau, D., Bennett, L., James, J., & Morse, D. L. (1989). Acquisition of the classically conditioned eyeblink response in humans over the lifespan.Psychology and Aging, 4, 34–41.

    Article  PubMed  Google Scholar 

  • Solomon, P. R., Solomon, S. D., Vander Schaaf, E., & Perry, H. E. (1983). Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure.Science, 220, 329–331.

    Article  PubMed  Google Scholar 

  • Solyom, L., & Barik, H. C. (1965). Conditioning in senescence and senility.Journal of Gerontology, 20, 483–488.

    PubMed  Google Scholar 

  • Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system.Science, 253, 1380–1386.

    Article  PubMed  Google Scholar 

  • Steinmetz, J. E. (1996). The brain substrates of classical eyeblink conditioning in rabbits. In J. R. Bloedel, T. J. Ebner, & S. P. Wise (Eds.),The acquisition of motor behavior in vertebrates, (pp. 89–114), Cambridge, MA: MIT Press.

    Google Scholar 

  • Steinmetz, J. E. (2000). Brain substrates of classical eyeblink conditioning: A highly localized but also distributed system.Behavioural Brain Research,110, 13–24.

    Article  PubMed  Google Scholar 

  • Steinmetz, J. E., & Thompson, R. F. (1991). Brain substrates of aversive classical conditioning. In J. Madden IV, (Ed.),Neurobiology of learning, emotion, and affect (pp. 97–120). New York: Raven Press.

    Google Scholar 

  • Thompson, R. F. (1986). The neurobiology of learning and memory.Science, 233, 941–947.

    Article  PubMed  Google Scholar 

  • Thompson, R. F. (1988). Classical conditioning: The Rosetta stone for brain substrates of age-related deficits in learning and memory?.Neurobiology of Aging, 9, 547–548.

    Article  PubMed  Google Scholar 

  • Thompson, R. F. (2000). Discovering the brain substrates of eyeblink classical conditioning. In D. S. Woodruff-Pak & J. E. Steinmetz (Eds.),Eyeblink classical conditioning: Volume II: Animal models. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Thompson, R. F., Bao, S., Chen, L., Cipriano, B. D., Grethe, J. S., Kim, J. J. Thompson, j. K., Tracy, j. A., Weninger, m.S., & Krupa, D. J. (1997). Associative learning. In J. D. Schmahmann (Ed.),The cerebellum and cognition. International Review of Neurobiology. Vol. 41 (pp. 341–366). San Diego: Academic Press.

    Google Scholar 

  • Thompson, R. F., & Krupa, D. J. (1994). Organization of memory traces in the mammalian brain.Annual Review of Neuroscience, 17, 519–549.

    Article  PubMed  Google Scholar 

  • Timmann, D., Kolb, F. B., Baier, C., Rijntjes, M., Muller, S. P., Diener H. C. et al. (1996). Cerebellar activation during classical conditioning of the human flexion reflex: A PET-study.NeuroReport 7 2056–2060.

    Article  PubMed  Google Scholar 

  • Topka, H., Valls-Sole, J., Massaquoi, S. G., & Hallett, M. (1993). Deficit in classical conditioning in patients with cerebellar degeneration.Brain, 116, 961–969.

    Article  PubMed  Google Scholar 

  • Torvik, A., Torp, S., & Lindboe, C. F. (1986). Atrophy of the cerebellar vermis in ageing. A morphometric and histologic study.Journal of Neurological Science, 76 283–294. Woodruff-Pak, D. S. (1993). Eyeblink classical conditioning in H.M.: Delay and trace paradigms.Behavioral Neuroscience, 107, 911–925.

    Article  Google Scholar 

  • Woodruff-Pak, D. S. (1997). Classical conditioning. In J. D. Schmahmann (Ed.),The cerebellum and cognition. International Review of Neurobiology, Vol. 41 (pp. 341–366). San Diego: Academic Press.

    Google Scholar 

  • Woodruff-Pak, D. S., Cronholm, J. F., & Sheffield, J. B. (1990). Purkinje cell number related to rate of eyeblink classical conditioning.NeuroReport, 1, 165–168.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., Ewers, M., & Vogel, R. W. III (2001). An associative learning measure sensitive to Alzheimer’s disease early in disease progression.Fifth International Meeting on Alzheimer’s and Parkinson’s Disease Abstracts, Kyoto, Japan. Woodruff-Pak, D. S. & Finkbiner, R. G. (1995). Larger nondeclarative than declarative deficits in learning and memory in human aging.Psychology and Aging, 10, 416–426.

  • Woodruff-Pak, D. S., Finkbiner, R. G., & Katz, I. R. (1989). A model system demonstrating parallels in animal and human aging: Extension to Alzheimer’s disease. In E. M. Meyer, J. W. Simpkins, & J. Yamamoto (Eds.),Novel approaches to the treatment of Alzheimer’s disease (pp. 355–371), NY: Plenum.

    Google Scholar 

  • Woodruff-Pak, D. S., Finkbiner, R. G., & Sasse, D. K. (1990). Eyeblink conditioning discriminates Alzheimer’s patients from non-demented aged.Neuroreport, 1, 45–49.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., Goldenberg, G., Downey-Lamb, M. M., Boyko, O. B., & Lemieux, S. K. (2000). Cerebellar volume in humans related to magnitude of classical conditioning.NeuroReport, 14, 609–615.

    Article  Google Scholar 

  • Woodruff-Pak, D. S., & Hinchliffe, R. M. (1997). Scopolamine- or mecamylamine-induced learning impairment: Reversed by nefiracetam.Psychopharmacology, 131, 130–139.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., & Jaeger, M. (1998). Predictors of eyeblink classical conditioning over the adult age span.Psychology and Aging, 13, 193–205.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., & Papka, M. (1996a). Alzheimer’s disease and eyeblink conditioning: 750 ms trace versus 400 ms delay paradigm.Neurobiology of Aging, 17, 397–404.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., & Papka, M. (1996b). Huntington’s disease and eyeblink classical conditioning: Normal learning but abnormal timing.Journal of the International Neuropsychological Society, 2, 323–334.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., Papka, M., & Ivry, R. B. (1996). Cerebellar involvement in eyeblink classical conditioning in humansNeuropsychology, 10, 443–458.

    Article  Google Scholar 

  • Woodruff-Pak, D. S., Papka, M., Romano, S., & Li, Y.-T. (1996). Eyeblink classical conditioning in Alzheimer’s disease and cerebrovascular dementia.Neurobiology of Aging, 17, 505–512.

    PubMed  Google Scholar 

  • Woodruff-Pak, D. S., Papka, M., & Simon, E. W. (1994). Eyeblink classical conditioning in Down’s Syndrome, Fragile X Syndrome, and normal adults over and under age 35.Neuropsychology, 8, 14–24.

    Article  Google Scholar 

  • Woodruff-Pak, D. S., Romano, S., & Papka, M. (1996). Training to criterion in eyeblink classical conditioning in Alzheimer’s disease, Down’s syndrome with Alzheimer’s disease, and healthy elderly.Behavioral Neuroscience, 110, 22–29.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., & Steinmetz, J. E. (Eds.) (2000a).Eyeblink classical conditioning: Volume I: Applications in humans. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Woodruff-Pak, D. S., & Steinmetz, J. E. (Eds.) (2000b),Eyeblink classical conditioning: Volume II: Animal models. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Woodruff-Pak, D. S., & Thompson, R. F. (1988). Classical conditioning of the eyeblink response in the delay paradigm in adults aged 18–83 years.Psychology and Aging, 3, 219–229.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., Vogel, R. W. III, Ewers, M., Coffey, J., Boyko, O. B., & Lemieux, S. K. (in press). MRI-assessed volume of cerebellum correlates with associative learning.Neurobiology of Learning and Memory.

  • Xu, J., Kobayashi, S., Yamaguchi, S., Iijima, K.-I., Okada, K., & Yamashita, K. (2000). Gender effects on age-related changes in brain structure.American Journal of Neuroradiology, 21, 112–118.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana S. Woodruff-Pak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodruff-Pak, D.S. Eyeblink classical conditioning differentiates normal aging from Alzheimer’s disease. Integr. psych. behav. 36, 87–108 (2001). https://doi.org/10.1007/BF02734044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02734044

Keywords

Navigation