Skip to main content
Log in

Ontogenetic changes in the neural mechanisms of eyeblink conditioning

  • Papers
  • Published:
Integrative Physiological & Behavioral Science Aims and scope Submit manuscript

Abstract

The rodent eyeblink conditioning paradigm is an ideal model system for examining the relationship between neural maturation and the ontogeny of associative learning. Elucidation of the neural mechanisms underlying the ontogeny of learning is tractable using eyeblink conditioning because the necessary neural circuitry (cerebellum and interconnected brainstem nuclei) underlying the acquisition and retention of the conditioned response (CR) has been identified in adult organisms. Moreover, the cerebellum exhibits substantial postnatal anatomical and physiological maturation in rats. The eyeblink CR emerges developmentally between postnatal day (PND) 17 and 24 in rats. A series of experiments found that the ontogenetic emergence of eyeblink conditioning is related to the development of associative learning and not related to changes in performance. More recent studies have examined the relationship between the development of eyeblink conditioning and the physiological maturation of the cerebellum, a brain structure that is necessary for eyeblink conditioning in adult organisms. Disrupting cerebellar development with lesions or antimitotic treatments impairs the ontogeny of eyeblink conditioning. Studies of the development of physiological processes within the cerebellum have revealed striking ontogenetic changes in stimulus-elicited and learning-related neuronal activity. Neurons in the interpositus nucleus and Purkinje cells in the cortex exhibit developmental increases in neuronal discharges following the unconditioned stimulus (US) and in neuronal discharges that model the amplitude and time-course of the eyeblink CR. The developmental changes in CR-related neuronal activity in the cerebellum suggest that the ontogeny of eyeblink conditioning depends on the development of mechanisms that estavlish cerebellar plasticity. Learning and the induction of neural plasticity depend on the magnitude of the US input to the cerebellum. The role of developmental changes in the efficacy of the US pathway has been investigated by monitoring neuronal activity in the inferior olive and with stimulation techniques. The results of these experiments indicate that the development of the conditioned eyeblink response may depend on dynamic interactions between multiple developmental processes within the eyeblink neural circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiba, A., Kano, M., Chen, C., Stanton, M.E., Fox, G.D., Herrup, K., Zwingman, T.A., & Tonegawa, S. (1994). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice.Cell, 79, 377–388.

    Article  PubMed  Google Scholar 

  • Aizenman, C.D., & Linden, D.J. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum.Journal of Neurophysiology, 82, 1697–1709.

    PubMed  Google Scholar 

  • Aizenman, C.D., & Linden, D.J. (2000). Rapid, synaptically driven, increases in the intrinsic excitability of cerebellar deep nuclear neurons.Nature Neuroscience, 3, 109–111.

    Article  PubMed  Google Scholar 

  • Aizenman, C.D., Manis, P.B., & Linden D.J. (1998). Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse.Neuron, 21, 827–835.

    Article  PubMed  Google Scholar 

  • Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats.Journal of Comparative Neurology, 136, 269–294.

    Article  PubMed  Google Scholar 

  • Altman, J. (1972a). Postnatal development of the cerebellar cortex in the rat: I. The external germinal layer and the transitional molecular layer.Journal of Comparative Neurology, 145, 353–398.

    Article  PubMed  Google Scholar 

  • Altman, J. (1972b). Postnatal development of the cerebellar cortex in the rat: II. Phases in the maturation of Purkinje cells and of the molecular layer.Journal of Comparative Neurology, 145, 399–464. Altman, J. (1972c). Postnatal development of the cerebellar cortex in the rat: III. Maturation of the components of the granular layer.Journal of Comparative Neurology, 145, 465–514.

    Article  PubMed  Google Scholar 

  • Altman J (1982). Morphological development of the rat cerebellum and some of its mechanisms. In S.L. Palay, & V. Chan-Palay (Eds.),The Cerebellum: New Vistas (pp. 9–49) Berlin: Springer-Verlag.

    Google Scholar 

  • Altman, J. & Anderson, W.J. (1972). Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons, with prolonged X-irradiation started at birth.Journal of Comparative Neurology, 146, 355–406.

    Article  PubMed  Google Scholar 

  • Altman, J. & Anderson, W. J. (1973). Experimental reorganization of the cerebellar cortex. II. Effects of elimination of most microneurons with prolonged X-irradiation started at four days.Journal of Comparative Neurology, 149, 123–152.

    Article  PubMed  Google Scholar 

  • Anderson, W.A. & Flumerfelt, B.A. (1985). Purkinje cell growth beyond the twenty-third postnatal day.Developmental Brain Research, 17, 195–200.

    Article  Google Scholar 

  • Andersson, G., & Armstrong, D.M. (1987). Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion.Journal of Physiology (London), 385, 107–134.

    Google Scholar 

  • Apps, R., & Lee, S. (1999). Gating of transmission in climbing fibre paths to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat.Journal of Physiology (London), 516, 875–83.

    Article  Google Scholar 

  • Attwell, P.J., Cooke, S., & Yeo, C.H. (2000). Consolidation of nictiating membrane conditiong in the cerebellar cortex, but not in the cerebellar nuclei.Society for Neuroscience Abstract, New Orleans, LA.

  • Attwell, P.J., Rahman, S., Ivarsson, M., & Yeo, C.H. (1999). Cerebellar, cortical AMPA-kainate receptor blockade prevents performance of classically conditioned nictiating membrane responses.Journal of Neuroscience, 19, RC45.

    PubMed  Google Scholar 

  • Berry, M., & Bradley, P. (1976). The growth of dendritic trees of Purkinje cells in the cerebellum of the rat.Brain Research, 112, 1–35.

    Article  PubMed  Google Scholar 

  • Berthier, N.E. (1992). Muscle, activity during unconditioned and conditioned eye blinks in the rabbit.Behavioral Brain Research, 48, 21–28.

    Article  Google Scholar 

  • Berthier, N.E., & Moore, J.W. (1986). Cerebellar Purkinje cell activity related to the classically conditioned nictiating membrane response.Experimental Brain Research, 63, 341–350.

    Article  Google Scholar 

  • Berthier, N.E. & Moore, J.W. (1990). Activity of deep cerebellar nusclear cells during classical conditioning of nictiating membrane extension in rabbits.Experimental Brain Research, 83, 44–54.

    Article  Google Scholar 

  • Bourrat, F., Gotow, T., & Sotelo, C. (1989). Development of the rat inferior, olive: Migratory routes, formation of afferent and efferent connections. In P. Strata (Ed.),The Olivocerebellar System in Motor Control. New York: Springer-Verlag.

    Google Scholar 

  • Cegavske, C.F., Harrison, T.A., & Torigoe, Y. (1987). Identification of the substrates of the unconditioned response, in the classically conditioned rabbit, nictitating-membrane preparation. In I. Gormezano, W.F. Prokasy, & R.F. Thompson (Eds.),Classical conditioning, 3rd ed, (pp. 65–94). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Chapman, P.F., Steinmetz, J.E., Sears, L.L., & Thompson, R.F. (1990). Effects of lidocaine injection in the interpositus nucleus and red nucleus on conditioned behavioral and neuronal responses.Brain Research, 537, 149–156.

    Article  PubMed  Google Scholar 

  • Clark, G.A., McCormick, D.A., Lavond, D.G., & Thompson, R.F. (1984). Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses.Brain Research, 291, 125–136.

    Article  PubMed  Google Scholar 

  • Clark, R.E., & Lavond, D.G. (1993). Reversible lesions of the red nucleus during acquisition and retention of a classically conditioned behavior in rabbits.Behavioral Neuroscience, 107, 264–270.

    Article  PubMed  Google Scholar 

  • Clark, R.E., Zhang, A.A., & Lavond, D.G. (1992). Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior.Behavioral Neuroscience, 106, 879–888.

    Article  PubMed  Google Scholar 

  • Clark, R.E., Gohl, E.B., & Lavond, D.G. (1997). The learning-related activity that develops in the pontine nuclei during classical eye-blink conditioning is dependent on the interpositus nucleus.Learning and Memory, 3, 532–544.

    Article  PubMed  Google Scholar 

  • Crepel, F. (1971). Maturation of climbing fiber responses in the rat.Brain Research, 35, 272–276.

    Article  PubMed  Google Scholar 

  • Crepel, F. (1972). Maturation of cerebellar Purkinje cells. I. Postnatal evolution of the Purkinje cell spontaneous firing in the rat.Experimental Brain Research, 14, 463–479.

    Article  Google Scholar 

  • Crepel, F. (1974). Excitatory and inhibitory processes acting upon cerebellar Purkinje cells during maturation in the rat: influence of hypothyroidism.Experimental Brain Research, 20, 403–420.

    Article  Google Scholar 

  • Crepel, F., & Mariani, J., & Delhaye-Bouchaud, N.J. (1976). Evidence of a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum.Journal of Neurobiology, 7, 567–578.

    Article  PubMed  Google Scholar 

  • Delgado-Garcia, J.M., & Gruart, A. (1995). Signalling properties of deep cerebellar nuclei neurones. In W.R. Ferrel, & U. Proske (Eds.),Neural Control of Movement, (pp. 225–232). New York: Plenum Press.

    Google Scholar 

  • Desmond, J.E., Rosenfield, M.E., & Moore, J.W. (1983). An HRP study of the brainstem afferents to the accessory abducens region and dorsolateral pons in rabbit: Implications for the conditioned nictiating membrane response.Brain Research Bulletiin, 10, 747–763.

    Article  Google Scholar 

  • De Zeeuw, C.I., Van Alphen, A.M., Hawkins, R.K., & Ruigrok, T.J. (1997). Climbing fibre collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive.Neuroscience, 80, 981–986.

    Article  PubMed  Google Scholar 

  • Freeman, J.H. Jr., Barone, S. Jr., & Stanton, M.E. (1995a). Disruption of cerebellar maturation by an antimitotic agent impairs the ontogeny of eyeblink conditioning in rats.Journal of Neuroscience, 15, 7301–7314.

    PubMed  Google Scholar 

  • Freeman, J.H. Jr., Carter, C.S., & Stanton M.E. (1995b). Early cerebellar lesions impair, eyeblink conditioning in developing rats: differential effects of unilateral lesions, on postnatal day 10 or 20.Behavioral Neuroscience, 109, 893–902.

    Article  PubMed  Google Scholar 

  • Freeman, J.H. Jr., & Nicholson, D.A. (1999). Neuronal activity in the cerebellar interpositus and lateral pontine nuclei during inhibitory classical conditioning of the eyeblink response.Brain Research, 833, 225–233.

    Article  PubMed  Google Scholar 

  • Freeman, J.H. Jr., & Nicholson, D.A. (2000). Developmental changes in eye-blink conditioning and neuronal activity in the cerebellar interpositus nucleus.Journal of Neuroscience, 20, 813–819.

    PubMed  Google Scholar 

  • Fredette, B.J., & Mugnaini, E. (1991). The GABAergic cerebello-olivary projection in the rat.Anatomy and Embryology (Berlin), 184, 225–243.

    Article  Google Scholar 

  • Garcia, K.S., & Mauk, M.D. (1998). Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses.Neuropharmacology, 37, 471–480.

    Article  PubMed  Google Scholar 

  • Gardette, R., Debono, M., Dupont, J.L., & Crepel, F. (1985a) Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. I. Postsynaptic potentials.Developmental Brain Research, 19, 47–55.

    Article  Google Scholar 

  • Gardette, R., Debono, M., Dupont, J.L., & Crepel, F. (1985b). Electrophysiological, studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. II. Membrane conductances.Developmental Brain Research, 20, 97–106.

    Article  Google Scholar 

  • Gellman, R., Gibson, A.R., & Houk, J.C. (1985). Inferior olivary neurons in the awake cat: detection of contact and passive body displacement.Journal of Neurophysiology, 54, 40–60.

    PubMed  Google Scholar 

  • Gilbert, P.F., & Thach, W.T. (1977). Purkinje cell activity during motor learning.Brain Research, 128, 309–328.

    Article  PubMed  Google Scholar 

  • Gormezano, I. (1966). Classical conditioning. In J.B. Sidowski (Ed.)Experimental Methods and Instrumentation in Psychology, (pp. 385–420). New York: McGraw-Hill.

    Google Scholar 

  • Gormezano, I., Kehoe, E.J., & Marshall, B.S. (1983). Twenty years of classical conditioning research with the rabbit.Progress in Psychobiology and Physiological Psychology, 10, 197–275.

    Google Scholar 

  • Gormezano, I., Schneiderman, N., Deaux, E.G., & Fuentes, I. (1962). Nictitating membrane: classical conditioning and extinction in the albino rabbit.Science, 138, 33–34.

    Article  PubMed  Google Scholar 

  • Gould, T.J., Sears, L.L., & Steinmetz, J.E. (1993). Possible CS and US pathways for rabbit classical eyelid conditioning: Electrophysiological evidence for projections from the pontine nuclei and inferior olive to cerebellar cortex and nuclei.Behavioral and Neural Biology 60, 172–185.

    Article  PubMed  Google Scholar 

  • Gould, T.J., & Steinmetz, J.E. (1994). Multiple-unit activity from rabbit cerebellar cortex and interpositus nucleus during classical discrimination/reversal eyelid conditions.Brain Research, 652, 98–106.

    Article  PubMed  Google Scholar 

  • Gould, T.J., & Steinmetz, J.E. (1996). Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisitions, extinction, and backward classical eyelid conditioning.Neurobiology of Learning and Memory, 65, 17–34.

    Article  PubMed  Google Scholar 

  • Gruart, A., Blazquez, P., & Delgado-Garcia, J.M. (1995). Kinematics of spontaneous, reflex, and conditioned eyelid movements in the alert.Journal of Neurophysiology, 74, 226–248.

    PubMed  Google Scholar 

  • Gruart, A., Blazquez, P., Pastor, A.M., & Delgado-Garcia, J.M. (1994). Very short-term potentiation of climbing fiber effects on deep cerebellar nuclei neurons by conditioning stimulation of mossy fiber afferents.Experimental Brain Research, 101, 173–177.

    Article  Google Scholar 

  • Gruart, A., & Yeo, C.H. (1995). Cerebellar cortex and eyeblink conditioning: bilateral regulation of conditioned responses.Experimental Brain Research, 104, 431–448.

    Article  Google Scholar 

  • Hardiman, M.J., Ramnani, N., & Yeo, C.H. (1996). Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit.Experimental Brain Research, 110, 235–247.

    Article  Google Scholar 

  • Harvey, J.A., Land, T., & McMaster, S.E. (1984). Anatomical study of the rabbit's corneal-VIth nerve reflex: connections between cornea, trigeminal sensory complex, and the abducens and accessory abducens nuclei.Brain Research, 301, 307–321.

    Article  PubMed  Google Scholar 

  • Harvey, J.A., Welsh, J.P., Yeo, C.H., & Romano, A.G. (1993). Recoverable and nonrecoverable deficits in conditioned responses after cerebellar cortical lesions.Journal of Neuroscience, 13, 1624–1635.

    PubMed  Google Scholar 

  • Hemart, N., Daniel, H., Jaillard, D., & Crepel, F. (1995). Receptors and second messengers involved in longterm depression in rat cerebellar slices in vitro: a reappraisal.European Journal of Neuroscience, 7, 45–53.

    Article  PubMed  Google Scholar 

  • Hesslow, G., & Ivarsson, M. (1996). Inhibition of the inferior olive during conditioned responses in the decerebrate ferrt.Experimental Brain Research, 110, 36–46.

    Article  Google Scholar 

  • Horn, K.M., van Kan, P.L., & Gibson, A.R. (1996). Reduction of rostral dorsal accessory olive responses during reaching.Journal of Neurophysiology, 76, 4140–4151.

    PubMed  Google Scholar 

  • Ito, M., & Simson, J.I. (1971). Discharges in Purkinje cell axons during climbing fiber activation.Brain Research, 31, 215–219.

    Article  PubMed  Google Scholar 

  • Ito, M., Yoshida, M., Obata, K., Kawai, N., & Udo, M. (1970). Inhibitory control of intracerebellar nuclei by the purkinje cell axons.Experimental Brain Research, 10, 64–80.

    Article  Google Scholar 

  • Kapoor, R., Jaeger, C.B. & Llinas, R. (1988). Electrophysiology of the mammalian cerebellar cortex in organ culture.Neuroscience, 26, 493–507.

    Article  PubMed  Google Scholar 

  • Katz, D.B., & Steinmetz, J.E. (1997). Single-unit evidence for eye-blink conditioning in cerebellar cortex is altered, but not eliminated, by interpositus nucleus lesions.Learning and Memory, 4, 88–104.

    Article  PubMed  Google Scholar 

  • Kim, J.J., Krupa, D.J., & Thompson, R.F. (1998). Inhibitory cerebello-olivary projections and blocking effect in classical conditioning.Science, 279, 570–573.

    Article  PubMed  Google Scholar 

  • Kim, J.J., & Thompson, R.F. (1997). Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning.Trends in Neuroscience, 20, 177–181.

    Article  Google Scholar 

  • Kimble, G.A. (1947). Conditioning as a function of the time between conditioned and unconditioned stimuli.Journal of Experimental Psychology, 37, 1–15.

    Article  PubMed  Google Scholar 

  • Kitai, S.T., McCrea, R.A., Preston, R.J., & Bishop, G.A. (1977). Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. I. Climbing fiber system.Brain Research, 122, 197–214.

    Article  PubMed  Google Scholar 

  • Knowlton, B.J., & Thompson, R.F. (1988). Microinjections of local anesthetic into the pontine nuclei reduce the amplitude of the classically conditioned eyelid response.Physiology and Behavior, 43, 855–857.

    Article  PubMed  Google Scholar 

  • Krupa, D.J., Thompson, J.K., & Thompson, R.F. (1993). Localization of a memory trace in the mammalian brain.Science, 260, 989–991.

    Article  PubMed  Google Scholar 

  • Krupa, D.J., & Thompson, R.F. (1995). Inactivation of the superior cerebellar peduncle blocks expression but not acquisition of the rabbit's classically conditioned eye-blink response.Proceedings of the National Academy of Sciences, 92, 5097–5101.

    Article  Google Scholar 

  • Krupa, D.J., Weng, J., & Thompson, RF (1996). Inactivation of brainstem motor nuclei blocks expression but not acquisition of the rabbit's classically conditioned eyeblink response.Behavioral Neuroscience, 110, 219–227.

    Article  PubMed  Google Scholar 

  • Lang, E.J., Sugihara, I., & Llinas, R. (1996). GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat.Journal of Neurophysiology, 76, 255–275.

    PubMed  Google Scholar 

  • Lavond, D.G., Hembree, T.L., & Thompson, R.F. (1985). Effect of kainic acid lesions of the cerebellar interpositus nucleus on eyelid conditioning in the rabbit.Brain Research, 326, 179–182.

    Article  PubMed  Google Scholar 

  • Lavond, D.G., Kim, J.J., & Thompson, R.F. (1993). Mammalian brain substrates of aversive classical conditioning.Annual Review of Psychology, 44, 317–342.

    Article  PubMed  Google Scholar 

  • Lavond, D.G., Steinmetz, Yokaitis, M.H., & Thompson, R.F. (1987). Reacquisition of classical conditioning after removal of cerebellar cortex.Experimental Brain Research, 67, 569–593.

    Article  Google Scholar 

  • Lavond, D.G., & Steinmetz, J.E. (1989). Acquisition of classical conditioning without cerebellar cortex.Behavioural Brain Research, 33, 113–164.

    Article  PubMed  Google Scholar 

  • Lewis, J.L., LoTurco, J.J., & Solomon, P.R. (1987). Lesions of the middle cerebellar peduncle disrupt acquisition and retention of the rabbit's classically conditioned nictitating membrane response.Behavioral Neuroscience, 101, 151–157.

    Article  PubMed  Google Scholar 

  • Llinas, R. (1974). Eighteenth Bowditch lecture. Motor aspects of cerebellar control.Physiologist, 17, 19–46.

    PubMed  Google Scholar 

  • Llinas, R., Baker, R., & Sotelo, C. (1974). Electrotonic coupling between neurons in cat inferior olive.Journal of Neurophysiology, 37, 560–571.

    PubMed  Google Scholar 

  • Mackintosh, N.J. (1975). A theory of attention: variations in the associability of stimuli with reinforcement.Psychological Review, 82, 276–298.

    Article  Google Scholar 

  • Mauk, M.D. (1997). Roles of cerebellar cortex and nuclei in motor learning: Contradictions or clues?Neuron, 18, 343–346.

    Article  PubMed  Google Scholar 

  • Mauk, M.D., Steinmetz, J.E., & Thompson, R.F. (1986). Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus.Proceedings of the National Academy of Sciences, 83, 5349–5353.

    Article  Google Scholar 

  • McCormick, D.A., Clark, G.A., Lavond, D.G., & Thompson, R.F. (1982). Initial localization of the memory trace for a basic form of learning.Proceedings of the National Academy of Sciences, 79, 2731–2735.

    Article  Google Scholar 

  • McCormick, D.A., Guyer, P.E., & Thompson, R.F. (1982). Superior cerebellar peduncle lesions selectively abolish the ipsilateral classically conditioned nictitating membrane/eyelid response of the rabbit.Brain Research, 244, 347–350.

    Article  PubMed  Google Scholar 

  • McCormick, D.A., Lavond, D.G., & Thompson, R.F. (1983). Neuronal responses of the rabbit brainstem during performance of the classically conditioned nictitating membrane (NM)/eyelid response.Brain Research, 271, 73–88.

    Article  PubMed  Google Scholar 

  • McCormick, D.A., Steinmetz, J.E., & Thompson, R.F. (1985). Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response.Brain Research, 359, 120–130.

    Article  PubMed  Google Scholar 

  • McCormick, D.A., & Thompson, R.F. (1984). Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response.Journal of Neuroscience, 11, 2811–2822.

    Google Scholar 

  • Nelson, B.J., Adams, J.C., Barmack, N.H., & Mugnaini, E. (1989). Comparative study of glutamate decarboxylase immunoreactive boutons in the mammalian inferior olive.Journal of Comparative Neurology, 286, 514–539.

    Article  PubMed  Google Scholar 

  • Nicholson, D.A., & Freeman, J.H. Jr. (2000). Developmental changes in eye-blink conditioning and neuronal activity in the inferior olive.Journal of Neuroscience, 20, 8218–8226.

    PubMed  Google Scholar 

  • Pearce, J.M., & Hall, G. (1980). A model for Pavlovian learning: variations in the effectiveness of conditioned but not unconditioned stimuli.Psychological Review, 87, 523–552.

    Article  Google Scholar 

  • Pellegrini, J.J., Horn, A.K.E., & Evinger, C. (1995). The trigeminally evoked blink reflex: I. neuronal circuits.Experimental Brain Research, 107, 166–180.

    Article  Google Scholar 

  • Perrett, S.P., Ruiz, B.P. & Mauk, M.D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses.Journal of Neuroscience, 13 1708–1718.

    PubMed  Google Scholar 

  • Puro, D.G., & Woodward, D.J. (1977a). Maturation of evoked climbing fiber input to rat cerebellar Purkinje cells (I.).Experimental Brain Research, 28, 85–100.

    Google Scholar 

  • Puro, D.G., & Woodward, D.J. (1977b). Maturation of evoked mossy fiber input to rat cerebellar Purkinje cells (II.).Experimental Brain Research, 28, 427–441.

    Google Scholar 

  • Rescorla, R.A. & Wagner, A.R. (1972). A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In A.H. Black and W.F. Prokasy (Eds.),Classical Conditioning II: Current Research and Theory, (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Rosenfield, M.E., & Moore, J.W. (1983). Red nucleus lesions disrupt the classically conditioned nictitating membrane response in rabbits.Behavioural Brain Research, 10, 393–398.

    Article  PubMed  Google Scholar 

  • Schneiderman, N., Fuentes, I., & Gormezano, I. (1962). Acquisition and extinction of the classically conditioning eyelid response in the albino rabbit.Science, 136, 650–652.

    Article  PubMed  Google Scholar 

  • Schneiderman, N., & Gormezano, I. (1964). Conditioning of the nictitating membrane of the rabbit as a function of CS-US interval.Journal of Comparative and Physiological Psychology, 57, 188–195.

    Article  PubMed  Google Scholar 

  • Schreurs, B.G., Gusev, P.A., Tomsic, D., Alkon, D.L., & Shi, T. (1998). Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI.Journal of Neuroscience, 18, 5498–5507.

    PubMed  Google Scholar 

  • Schreurs, B.G., Sanchez-Andres, J.V., & Alkon, D.L. (1991). Learning-specific differences in Purkinje-cell dendrites of lobule HVI (lobulus simplex): intracellular recording in a rabbit cerebellar slice.Brain Research, 548, 18–22.

    Article  PubMed  Google Scholar 

  • Schreurs, B. G., Tomsic, D., Gusev, P. A., & Alkon, D. L. (1997). Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit's nictitating membrane response.Journal of Neurophysiology, 77, 86–92.

    PubMed  Google Scholar 

  • Schreurs, B.G. (2000). Cellular correlates of eyeblink classical conditioning. In D.S. Woodruff-Pak, & J.E. Steinmetz (Eds.),Eyeblink Classical Conditioning: Animal, (pp. 179–204). Amsterdam: Kluwer.

    Google Scholar 

  • Sears, L.L., & Steinmetz, J.E. (1991). Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response.Brain Research, 545, 114–122.

    Article  PubMed  Google Scholar 

  • Skelton, R.W. (1988). Bilateral cerebellar lesions disrupt conditioned eyelid responses in unrestrained rats.Behavioral Neuroscience, 102, 586–590. Smith, M.C. (1968). CS-US interval and US intensity in classical conditioning of the rabbit’s nictitating membrane response.Journal of Comparative and Physiological Psychology, 66, 679–687.

    Article  PubMed  Google Scholar 

  • Smith, M.C., Coleman, S.R., & Gormezano, I. (1969). Classical conditioning of the rabbit's nictitating membrane response at backward, simultaneous, and forward CS-US intervals.Journal of Comparative and Physiological Psychology, 69, 226–231.

    Article  PubMed  Google Scholar 

  • Spence, K.W., & Platt, J.R. (1966). UCS intensity and performance in eyelid conditioning.Psychological Bulletin, 65, 1–10.

    Article  Google Scholar 

  • Stanton, M.E., Freeman, J.H. Jr., & Skelton, R.W. (1992). Eyeblink conditioning in the developing rat.Behavioral Neuroscience, 106, 657–665.

    Article  PubMed  Google Scholar 

  • Stanton, M.E., & Freeman, J.H. Jr. (2000). Developmental studies of eyeblink conditioning in a rat model. In D.S. Woodruff-Pak, & J.E. Steinmetz (Eds.),Eyeblink Classical Conditioning: Animal, (pp. 105–134). Amsterdam: Kluwer.

    Google Scholar 

  • Stanton, M.E. (2000). Multiple memory systems, development, and conditioning.Behavioral Brain Research, 110, 25–37.

    Article  Google Scholar 

  • Steinmetz, J.E. (1990). Neuronal activity in the rabbit interpositus nucleus during classical NM-conditioning with a pontine-nucleus-stimulation CS.Psychological Science, 1, 378–382.

    Article  Google Scholar 

  • Steinmetz, J.E., Rosen, D.J., Chapman, P.F., Lavond, D.G., & Thompson, R.F. (1986). Classical conditioning of the rabbit eyelid response with a mossy fiber stimulation CS. I. Pontine nuclei and middle cerebellar peduncle stimulation.Behavioral Neuroscience, 100, 878–887.

    Article  PubMed  Google Scholar 

  • Steinmetz, J.E., Logan, C.G., Rosen, D.J., Thompson, J.K., Lavond, D.G., & Thompson, R.F. (1987). Initial localization of the acoustic conditioned stimulus projection system to the cerebellum essential for classical eyelid conditioning.Proceedings of the National Academy of Sciences, 84, 3531–3535.

    Article  Google Scholar 

  • Steinmetz, J.E., Lavond, D.G., & Thompson, R.F. (1989). Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus.Synapse, 3, 225–233.

    Article  PubMed  Google Scholar 

  • Steinmetz, J.E., Lavond, D.G., Ivkovich, D., Logan, C.G., & Thompson, R.F. (1992). Disruption of classical eyelid conditioning after cerebellar lesions: Damage to a memory trace system or simple performance deficit?Journal of Neuroscience, 12, 4403–4426.

    PubMed  Google Scholar 

  • Steinmetz, J.E., & Sengelaub, D.R. (1992). Possible conditioned stimulus pathway for classical eyelid conditioning in rabbits.Behavioral and Neural Biology, 57, 103–115.

    Article  PubMed  Google Scholar 

  • Thompson, R.F. (2000). Discovering the brain substrates of eyeblink classical conditioning. In D.S. Woodruff-Pak, & J.E. Steinmetz (Eds.),Eyeblink Classical Conditioning: Animal, (pp. 17–49). Amsterdam: Kluwer.

    Google Scholar 

  • Thompson, R.F., & Krupa, D.J. (1994). Organization of memory traces in the mammalian brain.Annual Review of Neuroscience, 17, 519–549.

    Article  PubMed  Google Scholar 

  • Tracy, J.A., Thompson, J.K., Krupa, D.J., & Thompson, R.F. (1998). Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit.Behavioral Neuroscience, 112, 267–285.

    Article  PubMed  Google Scholar 

  • Trigo, J.A., Gruart, A., & Delgado-Garcia, J.M. (1999). Role of proprioception in the control of lid position during reflex and conditioned blink responses in the alert behaving cat.Neuroscience, 90, 1515–1528.

    Article  PubMed  Google Scholar 

  • van Ham, J.J., & Yeo, C.H. (1996a). The central distribution of primary afferents from the external eyelids, conjunctiva, and cornea in the rabbit, studied using WGA-HRP and B-HRP as transganglionic tracers.Experimental Neurology, 142, 217–225.

    Article  PubMed  Google Scholar 

  • van Ham, J.J., & Yeo, C.H. (1996b). Trigeminal inputs to eyeblink motoneurons in the rabbit.Experimental Neurology, 142, 244–257.

    Article  PubMed  Google Scholar 

  • Welsh, J.P., & Harvey, J.A. (1989). Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response.Journal of Neuroscience, 9, 299–311.

    PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Lavond, D.G., Logan, C.G., Steinmetz, J.E., & Thompson, R.F. (1993). Cerebellar cortical lesions and reacquisition in classical conditioning of the nictitating membrane response in rabbits.Brain Research, 608, 67–77.

    Article  PubMed  Google Scholar 

  • Yeo, C.H., & Hardiman, M.J. (1992). Cerebellar cortex and eyeblink conditioning: a reexamination.Experimental Brain Research, 88, 623–638.

    Article  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., & Glickstein, M. (1985). Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei.Experimental Brain Research, 60, 87–98.

    Article  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., & Glickstein, M. (1986). Classical conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive.Experimental Brain Research, 63, 81–92.

    Article  Google Scholar 

  • Yeo, C.H. & Hesslow, G. (1998). Cerebellum and conditioned reflexes.Trends in Cognitive Sciences, 2, 322–330.

    Article  PubMed  Google Scholar 

  • Zecevic, N., & Rakic, P. (1976). Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man.Journal of Comparative Neurology, 167, 27–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Freeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, J.H., Nicholson, D.A. Ontogenetic changes in the neural mechanisms of eyeblink conditioning. Integr. psych. behav. 36, 15–35 (2001). https://doi.org/10.1007/BF02733945

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02733945

Key Words

Navigation