Skip to main content
Log in

Flow properties of superfluid systems of fermions

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

The nonspherically symmetric solutions to the Bardeen-Cooper-Schrieffer theory are given a physical interpretation in terms of an anisotropic fluid model. These solution have been used previously to predict a phase transition in liquid3He byEmery andSessler and byBrueckner, Soda, Anderson andMorel. An investigation of the flow properties of such systems is made that involves the calculation of the effective mass for flow in a straight channel and the moment of inertia of a cylindrical container of the liquid. The angular dependent energy gap characteristic of this type of theory leads to an effective mass for flow that depends on the angle between the axis of symmetry of the fluid and the direction of flow. The effective mass for flow vanishes as the absolute temperature tends to zero, although not as rapidly as for a spherically symmetric gap. The moment of inertia, when the symmetry direction for the fluid and the rotation axis are the same, is simply related to the mass for flow.

Riassunto

Si dà una interpretazione fisica in termini di un modello di fluido anisotropo alle soluzioni sfericamente asimmetriche della teoria di Bardeen-Cooper-Schrieffer. Queste soluzioni sono state precedentemente usate daEmery eSessler e daBrueckner, Soda, Anderson eMorel per predire una transizione di fase nel3He liquido. Si esegue una ricerca delle caratteristiche di flusso di tali sistemi, che comporta il calcolo della massa effettiva per il flusso in un canale diritto e del momento d’inerzia di un cilindro contenente il liquido. Il gap di energia dipendente dall’angolo caratteristico di questo tipo di teoria porta ad una massa effettiva per il flusso che dipende dall’angolo fra l’asse di simmetria del fluido e la direzione del flusso. La massa effettiva per il flusso si annulla al tendere a zero della temperatura assoluta, anche se non altrettanto rapidamente che per un gap a simmetria sferica. Quando la direzione di simmetria del fluido coincide con l’asse di rotazione, il momento d’inerzia sta in un rapporto semplice con la massa per il flusso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. J. Bardeen, L. N. Cooper andJ. R. Schrieffer:Phys. Rev.,108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. L. van Hove:Physica,25, 849 (1959);V. J. Emery:Reaction matrix singularities and the energy gap in an infinite system of fermions, Lawrence Radiation Laboratory Report UCRL-9076, (February 8, 1960) (Submitted for publication to Nuclea Physics).

    Article  ADS  MathSciNet  Google Scholar 

  3. S. T. Belyaev:Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.,31, No. 11 (1959).

  4. L. N. Cooper, R. L. Mills andA. M. Sessler:Phys. Rev.,114, 1377 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  5. N. N. Bogoljubov, V. V. Tolmachev andD. V. Shirkov:A New Method in the Theory of Superconductivity (New York, 1959).

  6. V. J. Emery andA. M. Sessler:Phys. Rev.,119, 43 (1960).

    Article  ADS  Google Scholar 

  7. K. A. Brueckner, T. Soda, P. W. Anderson andP. Morel:Phys. Rev.,118, 1442 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  8. D. F. Brewer, J. G. Daunt andA. K. Sreedhar:Phys. Rev.,115, 836 (1959).A. C. Anderson, H. R. Hart Jr. andJ. C. Wheatley:Phys. Rev. Lett.,5, 133 (1960).

    Article  ADS  Google Scholar 

  9. P. W. Anderson:Phys. Rev.,112, 1900 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  10. L. D. Landau andE. M. Lifshitz:Statistical Physics (London, 1958), paragraph 126, p. 412 et seq. ProfessorW. D. Knight has kindly informed us of some recent observations on anisotropic-fluid behavior in the melting of metals:Ann. Phys.,8, 173 (1959). These authors find that the short-range order in metals is often preserved in the transition to the liquid phase.

  11. L. D. Landau:Journ. Phys. (USSR),5, 71 (1941).

    Google Scholar 

  12. J. Bardeen:Phys. Rev. Lett.,1, 399 (1958).

    Article  ADS  Google Scholar 

  13. I. M. Khalatnikov andA. A. Abrikosov:Adv. Phys.,8, 45 (1959).

    Article  ADS  Google Scholar 

  14. J. B. Blatt, S. T. Butler andM. S. Schafroth:Phys. Rev.,100, 481 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  15. P. W. Anderson andP. Morel:Phys. Rev. Lett.,5, 136 (1960).

    Article  ADS  Google Scholar 

  16. A. E. Glassgold, A. N. Kaufman andK. M. Watson:Phys. Rev. 120, 660. (1960).

    Article  ADS  MathSciNet  Google Scholar 

  17. R. D. Amado andK. A. Brueckner:Phys. Rev.,115, 1778 (1959).

    Article  ADS  Google Scholar 

  18. R. M. Rockmore:Phys. Rev.,116, 469 (1959), and private communication.

    Article  ADS  MathSciNet  Google Scholar 

  19. A. A. Abrikosov andI. M. Khalatnikov:Sov. Phys. Uspekhi,1, 68 (1958).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the U.S. Atomic Energy Commission, and in part by the National Science Foundation.

Work performed while a visitor at the Lawrence Radiation Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glassgold, A.E., Sessler, A.M. Flow properties of superfluid systems of fermions. Nuovo Cim 19, 723–737 (1961). https://doi.org/10.1007/BF02733368

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02733368

Navigation