Skip to main content

Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta

Abstract

This study characterizes organic carbon (Corganic) and phosphorus (P) geochemistry in surface sediments of the Sacramento-San Joaquin Delta, California. Sediment cores were collected from five sites on a sample transect from the edge of the San Francisco Bay eastward to the freshwater Consumnes River. The top 8 cm of each core were analyzed (in 1-cm intervals) for Corganic, four P fractions, and redox-sensitive trace metals (uranium and manganese). Sedimentary Corganic concentrations and Corganic: P ratios, decreased, while reactive P concentrations increased moving inland in the Delta. The fraction of total P represented by organic P increased inland, while that of authigenic P was higher bayward than inland reflecting increased diagenetic alteration of organic matter toward the bayward end of the transect. The redox indicator metals are consistent with decreasing sedimentary suboxia inland. The distribution of P fractions and C:P ratios, reflect the presence of relatively labile organic matter in upstream surface sediments. Sediment C and P geochemistry is influenced by site-specific particulate organic matter sources, the sorptive power of the sedimentary material present, physical forcing, and early diagenetic transformations presumably driven by Corganic oxidation.

This is a preview of subscription content, access via your institution.

Literature Cited

  • Alpine, A. E. andJ. E. Cloern. 1988. Phytoplankton growth rate in a light-limited environment, San Francisco Bay.Marine Ecology Progress Series 44:167–173.

    Article  Google Scholar 

  • Alpine, A. E. andJ. E. Cloern. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary.Limnology and Oceanography 37:946–955.

    Article  Google Scholar 

  • Anderson, L. A. andJ. L. Sarmiento. 1994. Redfield ratios of remineralization determined by nutrient data analysis.Global Biogeochemical Cycles 8:65–80.

    Article  CAS  Google Scholar 

  • Anderson, L. D. andM. L. Delaney. 2000. Sequential extraction and analysis of phosphorus in marine sediments: Streamlining of the SEDEX procedure.Limnology and Oceanography 45:509–515.

    CAS  Google Scholar 

  • Atwater, B. F., S. G. Conard, J. N. Dowden, C. W. Hedel, R. L. MacDonald, andW. Savage. 1979. History, landforms, and vegetation of the estuary's tidal marshes, p. 347–385.In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Division of the American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Bennett, W. A. andP. B. Moyle. 1996. Where have all the fishes gone? Interactive forces producing fish declines in the Sacramento-San Joaquin Estuary, p. 519–542.In J. T. Hollibaugh (ed.) San Francisco Bay: The Ecosystem. Pacific Division, American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Berner, R. A. andJ. L. Rao. 1994. Phosphorus in sediments of the Amazon River and estuary: Implications for the global flux of phosphorus to the sea.Geochimica et Cosmochimica Acta 58:2333–2339.

    Article  CAS  Google Scholar 

  • Boyle, E. A., J. M. Edmond, andE. R. Sholkovitz. 1977. The mechanism of iron removal in estuaries.Geochimica et Cosmochimica Acta 41:1313–1324.

    Article  CAS  Google Scholar 

  • Byrne, R., B. L. Ingram, S. Starratt, andF. Malamud-Roam. 2001. Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco Estuary.Quaternary Research 55:66–76.

    Article  CAS  Google Scholar 

  • Calvert, S. E. andT. F. Pedersen. 1993. Geochemistry of recent oxic and anoxic sediments: Implications for the geological record.Marine Geology 113:67–88.

    Article  CAS  Google Scholar 

  • Canuel, E. A., J. E. Cloern, D. B. Ringelberg, J. B. Guckert, andG. H. Rau. 1995. Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay.Limnolology and Oceanography 40:67–81.

    CAS  Google Scholar 

  • Church, T. M., M. M. Sarin, M. Q. Fleisher, andT. G. Ferdelman. 1996. Salt marshes: An important coastal sink for dissolved uranium.Geochimica et Cosmochimica Acta 60:3879–3887.

    Article  CAS  Google Scholar 

  • Cloern, J. E., E. A. Canuel, andD. Harris. 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system.Limnology and Oceanography 47:713–729.

    CAS  Google Scholar 

  • Conomos, T. J. 1979. Properties and circulation of San Francisco Bay waters, p. 47–84.In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Division of the American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Cooper, J. R. andJ. W. Gilliam. 1987. Phosphorus redistribution from cultivated fields into riparian areas.Soil Science Society of America Journal 51:1600–1604.

    Article  Google Scholar 

  • Craft, C. B. andW. P. Casey. 2000. Sediment and nutrient accumulation in floodpalin and depressional freshwater wetlands of Georgia, USA.Wetlands 20:323–332.

    Article  Google Scholar 

  • de Jonge, V. N. andL. A. Villerius. 1989. Possible role of carbonate dissolution in estuarine phosphate dynamics.Limnology and Oceanography 34:332–340.

    Google Scholar 

  • Delaney, M. L. 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle.Global Biogeochemical Cycles 12:563–572.

    Article  CAS  Google Scholar 

  • Filipek, L. andR. M. Owen. 1981 Diagenetic controls of phosphorus in outer continental.-shelf sediments from the Gulf of Mexico.Chemical Geology 33:181–204.

    Article  CAS  Google Scholar 

  • Filippelli, G. M. 2001. Carbon and phosphorus cycling in anoxic sediments of the Saanich Inlet, British Columbia.Marine Geology 174:307–321.

    Article  CAS  Google Scholar 

  • Filippelli, G. M. andM. L. Delaney. 1996. Phosphorus geochemistry of equatorial Pacific sediments.Geochimica et Cosmochimica Acta 60:1479–1495.

    Article  CAS  Google Scholar 

  • Finlay, J. C. 2001. Stable-carbon-isotope ratios of river biota: Implications for energy flow in lotic food webs.Ecology 82:1052–1064.

    Google Scholar 

  • Fox, L. E., S. L. Sagerb, andS. C. Wofsy. 1986. The chemical control of soluble phosphorus in the Amazon estuary.Geochimica et Cosmochimica Acta 50:783–794.

    Article  CAS  Google Scholar 

  • Goman, M. andL. Wells. 2000. Trends in river flow affecting the northeastern reach of the San Francisco Bay Estuary over the past 7000 years.Quaternary Research 54:206–217.

    Article  CAS  Google Scholar 

  • Ingram, B. L., P. de Deckker, A. R. Chivas, M. E. Conrad, andA. R. Byrne. 1998. Stable, isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA.Geochimica et Cosmochimica Acta 62:3229–3237.

    Article  CAS  Google Scholar 

  • Ingram, B. L., J. C. Ingle, andM. E. Conrad 1996. A 2000 yr record of Sacramento San Joaquin River inflow to San Francisco Bay Estuary, California.Geology 24:331–334.

    Article  CAS  Google Scholar 

  • Jassby, A. D. 2003. Phytoplankton in the Sacramento-San Joaquin River, Delta: Trophic role and long-term changes. 17th Biennial Conference of the Estuarine Research Federation, Seattle, Washington.

  • Jassby, A. D. andJ. E. Cloern. 2000. Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, USA).Aquatic Conservation 10:323–352.

    Article  Google Scholar 

  • Jassby, A. D., J. E. Cloern, andB. E. Cole. 2002. Annual primary production: Patterns and mechanisms of change in a nutrientrich tidal ecosystem.Limnology and Oceanography 47:698–712.

    Google Scholar 

  • Kimmerer, W. J. andJ. J. Orsi. 1996. Changes in the zooplankton of the San Francisco Bay Estuary since introduction of the clamPotamucorbula amurensis. p. 403–424.In J. T. Hollibaugh (ed.). San Francisco Bay: The Ecosystem. Pacific Division, American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Lebo, M. E. 1991. Particle-bound phosphorus along an urbanized coastal plain estuary.,Marine Chemistry 34:225–246.

    Article  CAS  Google Scholar 

  • Likens, G. E. 1985. An Ecosystem Approach to Aquatic Ecology: Mirror Lake and its Environment. Springer-Verlag, Berlin.

    Google Scholar 

  • Livingstone, D. A. andJ. C. Boykin. 1962. Vertical distribution of phosphorus in Linsley Pond mud.Limnology and Oceanography 7:57–62.

    CAS  Google Scholar 

  • Lucas, L. V., J. E. Cloern, J. K. Thompson, andN. E. Monsen. 2002. Functional variability of habitats within the Sacramento-San Joaquin Delta: Restoration implications.Ecological Applications 12:1528–1547.

    Google Scholar 

  • Müller-Solger, A., A. D. Jassby, andD. C. Müller-Navarra. 2002. Nutritional quality of food resources for zooplankton (Daphnia) in a tidal freshwater system (Sacramento-San Joaquin Delta).Limnology and Oceanography 47:1468–1476.

    Article  Google Scholar 

  • Murrell, M. C. andJ. T. Hollibaugh. 2000. Distribution and composition of dissolved and particulate organic carbon in northern San Francisco Bay during low flow conditions.Estuarine Coastal and Shelf Science 51:75–90.

    Article  CAS  Google Scholar 

  • Murrell, M. C., J. T. Hollibaugh, M. W. Silver, andP. S. Wong. 1999. Bacterioplankton dynamics in northern San Francisco Bay: Role of particle association and seasonal freshwater flow.Limnology, and Oceanography 44:295–308.

    Google Scholar 

  • Nilsen, E. B., L. D. Anderson, andM. L. Delaney. 2003. Paleoproductivity, nutrient burial, climate change and the carbon cycle in the western equatorial Atlantic across the Eocene/Oligocene boundary.Paleoceanography 18:1057–1068.

    Article  Google Scholar 

  • Orsi, J. J. andW. L. Mecum. 1996. Food limitation as the probable cause of a long-term decline in the abundance ofNeomysis mercedis the opossum shrimp in the Sacramento-San Joaquin estuary, p. 375–401.In J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. Pacific Division, American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Paludan, C. andJ. T. Morris. 1999. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments.Biogeochemistry 45:197–221.

    Google Scholar 

  • Rao, J. L. andR. A. Berner. 1993. Phosphorus dynamics in the Amazon River and estuary.Chemical Geology 107:397–400.

    Article  Google Scholar 

  • Rao, J. L. andR. A. Berner. 1997. Time variations of phosphorus and sources of sediments beneath the Chang Jiang (Yangtze river).Marine Geology 139:95–108.

    Article  CAS  Google Scholar 

  • Reddy, K. R., J. C. Tucker, andW. F. Debusk. 1987. The role ofEgeria in removing nitrogen and phosphorus from nutrient enriched waters.Journal of Aquatic Plant Management 25:14–19.

    CAS  Google Scholar 

  • Ruttenberg, K. C. 1990. Diagenesis and burial of phosphorus in marine sediments; Implications for the marine phosphorus budget. Yale University, New Haven, Connecticut.

    Google Scholar 

  • San Francisco Estuary Institute (SFEI). 1999. 1999 Regional Monitoring Program Annual Results. http://www.sfei.org/rmp/1999/RMP_99_datatables.pdf, Oakaland, California.

  • Schroeder J. O., R. W. Murray, M. Leinen, R. C. Pflaum, andT. R. Janecek.. 1997. Ba, in equatorial Pacific carbonate sediment: Terrigenous, oxide, and biogenic associations.Paleoceanography 12:125–146.

    Article  Google Scholar 

  • Shlemon, R. J. andE. L. Begg. 1975. Late Quaternary evolution of the Sacramento-San Joaquin Delta, California, p. 259–266.In R. P. Suggate and M. M. Cresswell (eds.), Quaternary Studies. The Royal Society of New Zealand, Wellington, New Zealand.

    Google Scholar 

  • Sholkovitz, E. R. 1976. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater.Geochimica et Cosmochimica Acta 40:831–845.

    Article  CAS  Google Scholar 

  • Sobczak, W. V., J. E. Cloern, A. D. Jassby, andA. B. Müller-Solger. 2002. Bioavailability of organic matter in a highly disturbed estuary: The role of detrital and algal resources.Proceedings of the National Academy of Science 99:8101–8105.

    Article  CAS  Google Scholar 

  • Thomson-Becker, E. A. andS. N. Luoma. 1985. Temporal fluctuations in grain size, organic materials and iron concentrations in intertidal surface sediment of San Francisco Bay.Hydrobiologia 129:91–107.

    Article  CAS  Google Scholar 

  • Tiessen, H., J. W. B. Stewart, andC. V. Cole. 1984. Pathways of phosphorus transformations in soils of differing pedogenesis.Soil Science Society of America Journal 48:853–858.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. 1995. The composition of the continental crust.Geochimica et Cosmochimica Acta 59:1217–1232.

    Article  CAS  Google Scholar 

  • Wehr, J. D., D. A. Holen, M. M. MacDonald, andS. P. Lonergan. 1998. Effects of different organic carbon sources on a freshwater plankton community.Canadian Journal of Fisheries and Aquatic Sciences 55:2150–2160.

    Article  Google Scholar 

  • Zwolsman, J. J. G. 1994. Seasonal variability and biogeochemistry of phosphorus in the Scheldt Estuary, south-west Netherlands.Estuarine Coastal and Shelf Science 39:227–248.

    Article  CAS  Google Scholar 

Sources of Unpublished Materials

  • Cain, J. and G. Thomas. 2001. National Heritage Institute. Bay-Delta restoration: Development of short- and long-term programs to protect and restore the Delta and make it sustainable, http://www.n-h-i.org/Projects/RestorationBiodiversity/BayDelta/BayDelta.html

  • Greg, A. personal communication. Cutter Professor of Chemical Oceanography, Old Dominion University, 4600 Elkhorn, Avenue, Norfolk, Virginia 23529.

  • Murrell, M. C., J. D. Hagy, R. M. Greene, and J. B. James. 2003. Phytoplankton-and detritus-based food webs in Gulf of Mexico estuaries: Lessons learned from Pensacola Bay, FL, USA. 17th Biennial Conference of the Estuarine Research Federation, Seattle, Washington.

  • Reddy, K. R. personal communication. Professor of Soil and Water Science University of Florida, 106 Newell Hall, Gainesville, Florida 32611.

  • U.S. Geological Survey (USGS) 2004. The National Map Viewer <rshttp://nmviewogc.cr.usgs.gov.url>, U.S. Department of the Interior, Lakewood, Colorado.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Nilsen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nilsen, E.B., Delaney, M.L. Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta. Estuaries 28, 653–663 (2005). https://doi.org/10.1007/BF02732904

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732904

Keywords

  • Phytoplankton
  • Source Rock
  • Particulate Organic Matter
  • Particulate Organic Carbon
  • Organic Matter Source