Classical limit of quantum mechanics. A paradoxical example

Классический предел квантовой механики. Пример парадокса


In the context of the general problem of equivalence between classical mechanics and quantum mechanics in the macroscopic limit, we point out that, for the particular case of the one-dimensional Coulomb potential, the quantum-mechanical result in the classical limit, corresponding to a certain superposition of odd- and even-parity energy eigenfunctions, leads to inconsistency with classical mechanics. It is shown that the contradiction persists even if the singularity of the Coulomb potential is treated as the limiting case of a modified Coulomb potential in which the singularity has been smoothed out. The possible implication of this paradoxical finding is briefly discussed.


Nel contesto del problema generale dell'equivalenza tra meccanica classica e quantistica nel limite macroscopico, si evidenzia che, per il caso particolare del potenziale di Coulomb unidimensionale, il risultato quantomeccanico nel limite classico, corrispondente a una certa sovrapposizione di autofunzioni di energia con parità dispari e pari, porta all'incoerenza con la meccanica classica. Si mostra che la contraddizione persiste anche se la singolarità del potenziale di Coulomb è trattata come caso limite di un potenziale di Coulomb modificato nel quale la singolarità è stata facilitata. Si discute brevemente la possibile implicazione di questa scoperta paradossale.


В связи с общей проблемой эквивалентности между классической механикой и квантовой механикой в макроскопическом пределе, мы отмечаем, что для частного случая одномерного кулоновского потенциала квантовомеханический результат в классическом пределе, соответствующий определенной суперпозиции четных и нечетных собственных энергетических состояний, приводит к противоречию с классической механикой. Показывается, что это противоречие сохраняется, даже если сингулярность кулоновского потенциала рассматривается, как предельный случай модифицированного кулоновского потенциала, в котором сингулярность сглажена. Вкратце обсуждаются возможные следствия этого парадоксального результата.

This is a preview of subscription content, log in to check access.


  1. (1)

    A. Einstein: InScientific Papers Presented to Max Born (Oliver and Boyd, Edinburgh, London, 1953), p. 33.

    Google Scholar 

  2. (2)

    M. Born:Kg. Dnsk. Vid. Selsk. Mat. Medd.,30, 1 (1955);M. Born andW. Ludwig:Z. Phys.,150, 106 (1958).

    MathSciNet  Google Scholar 

  3. (3)

    W. Pauli: InThe Born-Einstein Letters (Macmillan, London, 1971), p. 221.

    Google Scholar 

  4. (4)

    L. de Broglie:Nonlinear Wave Mechanics, a Causal Interpretation (Elsevier, Amsterdam, 1960), p. 136.

    Google Scholar 

  5. (5)

    A. Peres andN. Rosen:Phys. Rev. B,135, 1486 (1964).

    MathSciNet  ADS  Article  Google Scholar 

  6. (6)

    L. S. Brown:Am. J. Phys.,40, 371 (1972).

    ADS  Article  Google Scholar 

  7. (7)

    D. Home andS. Sengupta:Am. J. Phys.,51, 265 (1983).

    ADS  Article  Google Scholar 

  8. (8)

    For detailed exposition of the ensemble interpretation of quantum mechanics see, for example,H. Margenau:Philos. Sci.,30, 6 (1963);J. L. Park:Am. J. Phys.,36, 211 (1968);J. B. Hartle:Am. J. Phys.,36, 704 (1968);L. E. Ballentine:Rev. Mod. Phys.,42, 358 (1970);F. J. Belinfante:Conventional Quantum Theory, Publications of the University of Joensuu, Series B1, No. 14, 17 (1978);R. G. Newton:Am. J. Phys.,48, 1029 (1980);D. Home andS. Sengupta:Physics News (Bulletin of the Indian Physics Association),12, 7 (1981).

    Google Scholar 

  9. (9)

    See relevant remarks on this point byA. Einstein in ref. (1)..

    Google Scholar 

  10. (10)

    A. Einstein: inThe Born-Einstein Letters (macmillan, London, 1971), p. 208.

    Google Scholar 

  11. (11)

    For a pertinent discussion regarding the classical-limit criterion see,e.g.,A. Messiah:Quantum Mechanics, Vol.1 (North-Holland, Amsterdam, 1961), p. 214.

    Google Scholar 

  12. (12)

    M. Andrews:Am. J. Phys.,44, 1064 (1976).

    ADS  Article  Google Scholar 

  13. (13)

    M. W. Cole andM. H. Cohen:Phys. Rev. Lett.,23, 1238 (1969); for a comprehensive review of the related works seeF. Stern:Surf. Sci.,58, 383 (1976).

    ADS  Article  Google Scholar 

  14. (14)

    R. Loudon:Am. J. Phys.,27, 649 (1969); however, we have not considered the nondegenerate ground state obtained byLoudon because this state is physically irrelevant, which has been pointed out byM. Andrews:Am. J. Phys.,34, 1194 (1966). It may be also noted that the validity of the even-parity energy eigensolutions derived byLoudon (given by eq. (3) in the present paper) has been questioned byL. K. Haines andD. H. Roberts:Am. J. Phys.,37, 1145 (1969). However, there is fallacy in such an objection, which has been recently pointed out byD. Home andS. Sengupta:Am. J. Phys.,50 552 (1982).

    ADS  Article  Google Scholar 

  15. (15)

    See, for example,M. Abramowitz andI. A. Stegun (Editors):Handbook of Mathematical Functions (Dover, New York, 1970), p. 509.

    Google Scholar 

  16. (16)

    E. T. Whittaker andG. N. Watson:Modern Analysis (Cambridge University Press, London, 1952), p. 337.

    Google Scholar 

  17. (17)

    A. Erdelyi, W. Magnus, F. Oberhettinger andF. Tricomi:Higher Transcendental Functions, Vol.1 (McGraw-Hill, New York, 1953), p. 264.

    Google Scholar 

  18. (18)

    G. Ludwig: inWerner Heisenberg und die Physik unserer Zeit (Berlin, 1961).

  19. (19)

    H. Kummel:Nuovo Cimento,1, 1057 (1955).

    MathSciNet  Article  Google Scholar 

  20. (20)

    N. Rosen:Am. J. Phys.,32, 597 (1964).

    ADS  Article  Google Scholar 

  21. (21)

    E. P. Wigner: inContemporary Research in the Foundations and Philosophy of Quantum Theory, edited byC. A. Hooker (D. Reidel, Dordrecht, Holland, 1973), p. 380.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. Home.

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Home, D., Sengupta, S. Classical limit of quantum mechanics. A paradoxical example. Nuovo Cim B 82, 214–224 (1984).

Download citation

  • PACS. 03.65
  • Quantum theory
  • quantum mechanics