Skip to main content
Log in

Polarization in proton-beryllium and proton-proton scattering at 1.7 GeV

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

The polarization in p-Be and p-p scattering has been measured by counter techniques at a proton kinetic energy of 1.74 GeV. The maximum polarization in p-Be scattering was found to beP max==0.19±0.04 and occurs at an angleθ max⩾3.5°. Inelastic scatters were rejected when the inelastic momentum loss was more than about 1% in the first scatter (magnetic analysis) or more than about 5% in the second scatter (Čerenkov threshold counter). The maximum polarization in p-p scattering isP max=0.30±0.09 and occurs at an angle 35°<θ max<<55° (c.m.). The angular dependence of the polarization is consistent with a distribution proportional to sin 2θ within large statistical errors. Optical model calculations applied to the data on p-Be scattering yield an almost all imaginary central potential of about 43 MeV and a spin-orbit potential of between 0.9 MeV and 2.0 MeV which is also almost all imaginary, in contrast with the predominantly real spin-orbit potential needed to explain the large polarization in the region of several hundred MeV.

Riassunto

Abbiamo misurato con la tecnica dei contatori la polarizzazione nello scattering p-Be e p-p con protoni di 1.74 GeV di energia cinetica. Abbiamo trovato che la massima polarizzazione nello scattering p-Be èP max=0.19±0.04 e si ha per un angoloθ max⩾3.5°. Abbiamo scartato gli scattering anelastici quando la perdita anelastica dell’impulso era più dell’1% circa nel primo scattering (analisi magnetica) o più del 5% circa nel secondo scattering (contatore di soglia di Čerenkov). La polarizzazione massima nello scattering p-p èP max=0.30±0.09 e si ha per un angolo di 35°<θ max<55° (c. m.). La dipendenza angolare della polarizzazione è coerente con una distribuzione proporzionale a sin 2θ entro ampi errori statistici. Calcoli del modello ottico applicati ai dati dello scattering p-Be danno un potenziale centrale, quasi tutto immaginario, di 43 MeV circa ed un potenziale spin-orbita compreso fra 0.9 MeV e 2.0 MeV, che è anche quasi tutto immaginario, in contrasto con il potenziale spin-orbita predominantemente reale necessario per spiegare la forte polarizzazione nella zona delle parecchie centinaia di MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Prugne, M. Marquet andM. Bougon Onde Electrique,39, 612 (1959).

    Google Scholar 

  2. W. M. Preston, R. Wilson andJ. C. Street:Phys. Rev.,118, 579 (1960).

    Article  ADS  Google Scholar 

  3. H. A. Bethe:Ann. Phys.,3, 190 (1958).

    Article  ADS  Google Scholar 

  4. E. Fermi:Suppl. Nuovo Cimento,2, 84 (1955).

    Article  Google Scholar 

  5. W. B. Riesenfeld andK. M. Watson:Phys. Rev.,102, 1157 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  6. F. F. Chen, C. P. Leavitt andA. M. Shapiro:Phys. Rev.,99, 857 (1955).

    Article  ADS  Google Scholar 

  7. M. G. Mescheriakov, S. B. Nurushev andG. D. Stoletov:Soviet Physics JETP,4, 337 (1957).

    Google Scholar 

  8. J. M. Dickson, B. Rose andD. C. Salter:Proc. Phys. Soc.,68, 381 (1955).

    Article  Google Scholar 

  9. P. Hilmann, A. Johansson andH. Tyren:Nucl. Phys.,4, 648 (1957).

    Article  Google Scholar 

  10. W. G. Chesnut, E. M. Hafner andA. Roberts:Phys. Rev.,104, 449 (1956).

    Article  ADS  Google Scholar 

  11. O. Chamberlain, E. Segrè, R. D. Tripp, C. Wiegand andT. Ypsilantis:Phys. Rev.,96, 807 (1954) and102, 1659 (1956).

    Article  ADS  Google Scholar 

  12. H. G. De Carvalho, J. Marshall andL. Marshall:Phys. Rev.,96, 1081 (1954).

    Article  ADS  Google Scholar 

  13. E. Heiberg, U. Kruse, J. Marshall, L. Marshall andF. Solmitz:Phys. Rev.,97, 250 (1955).

    Article  ADS  Google Scholar 

  14. N. E. Booth, F. L. Hereford, M. Huq, G. W. Hutchinson, M. E. Law, A. M. Segar andD. H. White:Proc. of Int. Conf. on High Energy Physics at CERN (1958), p. 307.

  15. C. J. Batty, W. O. Lock andP. V. March:Proc. Phys. Soc.,73, 100 (1959).

    Article  ADS  Google Scholar 

  16. C. J. Batty andS. J. Goldsack:Proc. Phys. Soc.,72, 1130 (1958).

    Article  ADS  Google Scholar 

  17. A. E. Taylor:Proc. of the VI Ann. Intern. Rochester Conference on High Energy Physics, p. 13.

  18. E. Baskir, E. M. Hafner, A. Roberts andJ. H. Tinlot:Phys. Rev.,106, 564 (1957).

    Article  ADS  Google Scholar 

  19. J. M. Dickson andD. C. Salter:Nature,173, 946 (1954).

    Article  ADS  Google Scholar 

  20. D. Fisher andJ. Baldwin:Phys. Rev.,100, 1445 (1955).

    Article  ADS  Google Scholar 

  21. O. Chamberlain, E. Segrè, R. D. Tripp, C. Wiegand andT. Ypsilantis:Phys. Rev.,105, 288 (1957).

    Article  ADS  Google Scholar 

  22. J. A. Kane, R. A. Stallwood, R. B. Sutton, T. H. Fields andJ. G. Fox:Phys. Rev.,95, 1694 (1954).

    Article  ADS  Google Scholar 

  23. M. G. Mescheriakov, S. B. Nurushev andG. D. Stoletov:Soviet Physics JETP,6, 28 (1958).

    ADS  Google Scholar 

  24. R. J. Homer, G. W. Hutchinson, W. K. McFarlane, A. W. O’Dell, R. Rubinstein andE. J. Sacharidis:Nuovo Cimento,16, 1132 (1960).

    Article  Google Scholar 

  25. H. Feshbach:Ann. Rev. Nucl. Sci.,8, 49 (1958).

    Article  ADS  Google Scholar 

  26. Barge et al.: private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bareyre, P., Detoeuf, J.F., Smith, L.W. et al. Polarization in proton-beryllium and proton-proton scattering at 1.7 GeV. Nuovo Cim 20, 1049–1066 (1961). https://doi.org/10.1007/BF02732517

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732517

Navigation