Advertisement

Revista de Oncología

, Volume 4, Issue 5, pp 228–240 | Cite as

Prostate cancer and the androgen receptor gene

  • Domingo Navarro Bosch
  • Juan J. Cabrera Galván
  • Nicolás Chesa Ponce
  • B. Nicolás Díaz-ChicoEmail author
Revisiones
  • 40 Downloads

Abstract

Carcinoma of the prostate is the most frequently diagnosed malignancy and the second leading cause of death as a result of cancer in men in the Western countries. Androgens act on the prostatic epithelial cells by binding to an intracellular protein, the androgen receptor (AR), which is a ligand-dependent transcription factor. Prostatic cells have a wide range of responses to androgens, which ultimately control both the cell division cycle and the cell differentiation. These properties of the AR makes it important for both prostatic function and cancer. The AR is codified by the AR gene, which possesses two length polymorphisms related to prostate cancer incidence. The AR gene is frequently mutated in androgen insensitive prostatic cancer that often leads to antiandrogen-driven tumor growth. There is cumulative evidence suggesting that the AR gene variability is important in various aspects of prostatic cancer, such as racial distribution, age of appearance, recurrence and response to hormones therapy. Here we discuss the most recent and relevant findings on AR gene and prostate cancer, in order provide a comprehensive interpretation of the clinical behavior of tumors at molecular levels.

Key words

prostatic cancer androgen receptor gene polymorphisms androgen resistance 

El gen del receptor del andrógeno en el cáncer de próstata

Resumen

El carcinoma de próstata es el tumor maligno más frecuentemente diagnosticado y constituye la segunda causa de muerte por cáncer en los países occidentales. Los andrógenos actúan sobre el epitelio prostático mediante su unión a una proteína intracelular, el receptor de andrógenos (RA), que es un factor de transcripción génica dependiente de ligando. Las células prostáticas tienen un amplio abanico de respuestas a los andrógenos, que finalmente controlan tanto el ciclo de división celular como la diferenciación celular. Estas propiedades hacen a los andrógenos importantes para la función y la carcinogénesis prostáticas. El RA es codificado por el gen RA situado en el cromosoma X, que posee dos polimorfismos de longitud relacionados con el cáncer de próstata. El gen RA aparece frecuentemente mutado en los cánceres de próstata insensibles a los andrógenos, lo que conduce frecuentemente al crecimiento tumoral estimulado por los antiandrógenos. Se ha acumulado evidencia científica que sugiere que la variabilidad del gen RA es importante en varios aspectos del cáncer de próstata, tales como la desigual distribución racial, la edad de aparición, la frecuencia de recidivas y la respuesta a la terapia hormonal. En este artículo discutimos los hallazgos recientes más relevantes sobre el gen RA y el cáncer de próstata, tratando de proporcionar una interpretación comprensible del comportamiento de los tumores prostáticos a nivel molecular.

Palabras clave

cáncer de próstata receptor de andrógenos polimorfismos génicos resistencia a andrógenos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taplin ME, Ho SM. The endocrinology of prostate cancer. J Clin Endocrinol Metab 2001;86:3467–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Avila DM, Zoppi S, McPhaul MJ. The androgen receptor (AR) in syndromes of androgen insensitivity and in prostate cancer. J Steroid Biochem Mol Biol 2001;76: 135–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Culig Z, Hobisch A, Bartsch G, et al. Androgen receptoran update of mechanisms of action in prostate cancer. Urol Res 2000;28:211–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Cude KJ, Dixon SC, Guo Y, et al. The androgen receptor: genetic considerations in the development and treatment of prostate cancer. J Mol Med 1999:77:419–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Ross RK, Pike MC, Coetzee GA, et al. Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res 1998;58:4497–504.PubMedGoogle Scholar
  6. 6.
    López-Otín C, Diamandis EP. Breast and prostate cancer: An analysis of common features. Endocr Rev 1998; 19:365–96.PubMedGoogle Scholar
  7. 7.
    Fernández L, Chirino R, Boada LD, et al. Stanozolol and Danazol, unlike the natural androgens, interact with the low-affinity glucocorticoid binding sites from male rat liver microsomes. Endocrinology 1994;134:1401–8.PubMedGoogle Scholar
  8. 8.
    Boada LD, Fernández L, Luzardo OP, et al. Identification of a specific binding site for the anabolic steroid Stanozolol in male rat liver microsomes. J Pharmacol Exptl Therap 1996;279:1123–9.Google Scholar
  9. 9.
    Luzardo OP, Machin RP, Diaz-Chico BN, et al. Photoaffinity labeling identification of a specific binding protein for the anabolic steroids stanozolol and danazol: an oligomeric protein regulated by age, pituitary hormones and ethinyl estradiol. Endocrinology 2000;141:3377–87.PubMedGoogle Scholar
  10. 10.
    Kumar VL, Majumder PK, Kumar V. Observations on EGFR gene amplification and polymorphism in prostatic diseases. Int Urol Nephrol 2000;32(1):73–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Chesire DR, Ewing CM, Sauvageol J, et al. Detection and analysis of beta-catenin mutations in prostate cancer. Prostate 2000;45(4):323–34.CrossRefPubMedGoogle Scholar
  12. 12.
    Carruba G, Pfeffer U, Fecarotta E, et al. Estradiol inhibits growth of hormone-nonresponsive PC3 human prostate cancer cells. Cancer Res 1994;54:1190–3.PubMedGoogle Scholar
  13. 13.
    Lau KM, LaSpina M, Long J, et al. Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res 2000;60:3175–82.PubMedGoogle Scholar
  14. 14.
    DiPaola RS, Zang H, Lambert GH, et al. Clinical and biologic activity of an estrogenic herbal combination in CaP. N Engl J Med 1998;339:785–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Bosland MC. The role of steroid hormones in prostate carcinogenesis. J Natl Cancer Inst (Monogr) 2000;27:39–66.CrossRefGoogle Scholar
  16. 16.
    Logothetis MC. A therapeutically relevant framework for the classification of human CaP. Seminars Oncol 1999; 26:369–74.Google Scholar
  17. 17.
    Yong EL, Lim J, Qi W, et al. Molecular basis of androgen receptor diseases. Ann Med 2000;32:15–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Henderson BE, Feigelson HS. Hormonal carcinogenesis. Carcinogenesis 2000;21:427–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Súchil Bernal L. Epidemiología del cáncer de próstata. Rev Oncología 2001;3:11–21.Google Scholar
  20. 20.
    Craft N, Shostak, Y, Carey M, et al. A mechanism for hormone-independent prostate cancer modulation of androgen receptor signaling by the HER-2/neu thyrosine kinase. Nature Med 1999;5:280–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Trapman J, Koivisto PA. Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res 2000;60:(22):6479–81.PubMedGoogle Scholar
  22. 22.
    Mononen N, Syrjakoski K, Matikainen M, et al. Genetic linkage analysis of prostate cancer families to Xq27–28. Hum. Hered 2001;51:107–13.Google Scholar
  23. 23.
    Ewing CM, Bujnovszky P, Carpten JD, et al. Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22-23. Am J Hum Genet 2001;69:341–50CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Habuchi T, Liqing Z, Suzuki T, et al. Increased risk of prostate cancer and benign prostatic hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect. Cancer Res 2000;60:5710–3.PubMedGoogle Scholar
  25. 25.
    Yamada Y, Watanabe M, Murata M, et al. Impact of genetic polymorphisms of 17-hydroxylase cytochrome P-450 (CYP17) and steroid 5alpha-reductase type II (SRD5A2) genes on prostate-cancer risk among the Japanese population. Int J Cancer 2001;92:683–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Marcelli M, Ittmann M, Mariani S, Sutherland R. Androgen receptor mutations in prostate cancer. Cancer Res 2000;60:944–9.PubMedGoogle Scholar
  27. 27.
    McPhaul MJ. Molecular defects of the androgen receptor. J Steroid Biochem Mol Biol 1999;69:315–22CrossRefPubMedGoogle Scholar
  28. 28.
    Bousema JT, Bussemakers MJ, van Houwelingen KP, et al. Polymorphisms in the vitamin D receptor gene and the androgen receptor gene and the risk of benign prostatic hyperplasia. Eur Urol 2000;37:234–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Ingles SA, Ross RK, Yu MC, et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997; 89:166–70CrossRefPubMedGoogle Scholar
  30. 30.
    Loy CJ., Yong EL. Sex, infertility and the molecular biology of the androgen receptor. Curr Opin Obstet Gynecol 2001;13:315–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Westberg L, Baghaei F, Rosmond R, et al. Polymorphisms of the androgen receptor gene and the estrogen receptor beta gene are associated with androgen levels in women. J Clin Endocrinol Metab 2001;86:2562–8.PubMedGoogle Scholar
  32. 32.
    Ellis JA, Stebbing M, Harrap SB. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J Invest Dermatol 2001;116:452–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acid Res 1994;22:3181–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Von Eckardstein S, Syska A, Gromoll J, et al. Inverse correlation between sperm concentration and number of androgen receptor CAG repeats in normal men. J Clin Endocrinol Metab 2001;86:2585–90.Google Scholar
  35. 35.
    Wallerand H., Remy-Martin A, Chabannes E, et al. Relationship between expansion of the CAG repeat in exon 1 of the androgen receptor gene and idiopathic male infertility. Fertil Steril 2001;76:769–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Krithivas K, Yurgalevitch SM, Mohr BA, et al. Evidence that the CAG repeat in the androgen receptor gene is associated with the age-related decline in serum androgen levels in men. J Endocrinol 1999;162:137–42.CrossRefPubMedGoogle Scholar
  37. 37.
    Lieberman AP, Fischbeck KH. Triplet repeat expansion in neuromuscular disease. Muscle Nerve 2000;23:843–50.CrossRefPubMedGoogle Scholar
  38. 38.
    Knoke I, Allera A, Wieacker P. Significance of the CAG repeat length in the androgen receptor gene (AR) for the transactivation function of an M780I mutant AR. Hum Genet 1999;104:257–61.CrossRefPubMedGoogle Scholar
  39. 39.
    La Spada AR, Wilson EM, Lubahn DB, et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991;352:77–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Djian P, Hancock JM, Chana HS. Codon repeats in genes associated with human diseases: fewer repeats in the genes of nonhuman primates and nucleotide substitutions concentrated at the sites of reiteration. Proc Natl Acad Sci U S A 1996;93:417–21.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wellington CL, Ellerby LM, Hackam AS, et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 1998;273:9158–67.CrossRefPubMedGoogle Scholar
  42. 42.
    Abdullah A, Trifiro MA, Panet-Raymond V, et al. Spinobulbar muscular atrophy: polyglutamine-expanded androgen receptor is proteolytically resistantin vitro and processed abnormally in transfected cells. Hum Mol Genet 1998;7:379–84.CrossRefPubMedGoogle Scholar
  43. 43.
    Mifsud A, Choon AT, Fang D, Yong EL. Prostate-specific antigen, testosterone, sex-hormone binding globulin and androgen receptor CAG repeat polymorphisms in subfertile and normal men. Mol Hum Reprod 2001;7: 1007–13.CrossRefPubMedGoogle Scholar
  44. 44.
    Giovannucci E, Platz EA, Stampfer MJ, et al. The CAG repeat within the androgen receptor gene and benign prostatic hyperplasia. Urology 1999;53:121–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Mitsumori K, Terai A, Oka H, et al. Androgen receptor CAG repeat length polymorphism in benign prostatic hyperplasia (BPH): correlation with adenoma growth. Prostate 1999;41:253–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Shibata A, Stamey TA, McNeal JE, et al. Genetic polymorphisms in the androgen receptor and type ii 5alphareductase genes in prostate enlargement. J Urol 2001; 166:1560–4.CrossRefPubMedGoogle Scholar
  47. 47.
    Platz EA, Rimm EB, Willett WC, et al. Racial variation in prostate cancer incidence and in hormonal system markers among male health professionals. J Natl Cancer Inst 2000;92:2009–17.CrossRefPubMedGoogle Scholar
  48. 48.
    Jin B, Beilin J, Zajac J, et al. Androgen receptor gene polymorphism and prostate zonal volumes in Australian and Chinese men. J Androl 2000;21:91–8.PubMedGoogle Scholar
  49. 49.
    Irvine RA, Yu MC, Ross RK, et al. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995;55:1937–40.PubMedGoogle Scholar
  50. 50.
    Sartor O, Zheng Q, Eastham JA. Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology 1999;53:378–80.CrossRefPubMedGoogle Scholar
  51. 51.
    Ekman P, Gronberg H, Matsuyama H, et al. Links between genetic and environmental factors and prostate cancer risk. Prostate 1999;39:262–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Hsing AW, Gao YT, Wu G, et al. Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res 2000;60:5111–6.PubMedGoogle Scholar
  53. 53.
    Hakimi JM, Schoenberg MP, Rondinelli RH, et al. Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clin Cancer Res 1997;3:1599–608.PubMedGoogle Scholar
  54. 54.
    Stanford JL, Just JJ, Gibbs M, et al. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 1997;57:1194–8.PubMedGoogle Scholar
  55. 55.
    Modugno F, Weissfeld JL, Trump DL, et al. Variants of Aromatase and the Androgen and Estrogen Receptors: Toward a Multigenic Model of Prostate. Cancer Risk. Clin Cancer Res 2001;7:3092–6.PubMedGoogle Scholar
  56. 56.
    Correa-Cerro L, Wohr G, Haussler J, et al. (CAG)nCAA and GGN repeats in the human androgen receptor gene are not associated with prostate cancer in a French-German population. Eur J Hum Genet 1999;7:357–62.CrossRefPubMedGoogle Scholar
  57. 57.
    Bratt O, Borg A, Kristoffersson U, et al. CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk. Br J Cancer 1999; 81:672–6.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Latil AG, Azzouzi R, Cancel GS, et al. Prostate carcinoma risk and allelic variants of genes involved in androgen biosynthesis and metabolism pathways. Cancer 2001;92:1130–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Beilin J, Harewood L, Frydenberg M, et al. A case-control study of the androgen receptor gene CAG repeat polymorphism in Australian prostate carcinoma subjects. Cancer 2001;92:941–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Wille AH, Terrell RB, Cheville JC, et al. Focal microsatellite mutations in relatives with prostatic adenocarcinoma. Anticancer Res 1996;16(6B):3883–6.PubMedGoogle Scholar
  61. 61.
    Lange EM, Chen H, Brierley K, et al. The polymorphic exon 1 androgen receptor CAG repeat in men with a potential inherited predisposition to prostate cancer. Cancer Epidemiol Biomarkers Prev 2000;9:439–42.PubMedGoogle Scholar
  62. 62.
    Miller EA, Stanford JL, Hsu L, et al. Polymorphic repeats in the androgen receptor gene in high-risk sibships. Prostate 2001;48:200–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Hardy DO, Scher HI, Bogenreider T, et al. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J Clin Endocrinol Metab 1996;81:4400–5.PubMedGoogle Scholar
  64. 64.
    Nam RK, Elhaji Y, Krahn MD, et al. Significance of the CAG repeat polymorphism of the androgen receptor gene in prostate cancer progression. J Urol 2000;164:567–2.CrossRefPubMedGoogle Scholar
  65. 65.
    Schoenberg MP, Hakimi JM, Wang S, et al. Microsatellite multation (CAG24->18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 1994;198:74–80.CrossRefPubMedGoogle Scholar
  66. 66.
    Lumbroso R, Beitel LK, Vasiliou DM, et al. Codon-usage variants in the polymorphic (GGN)n trinucleotide repeat of the human androgen receptor gene. Hum Genet 1997;101:43–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Platz EA, Giovannucci E, Dahl DM, et al. The androgen receptor gene GGN microsatellite and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 1998;7:379–84.PubMedGoogle Scholar
  68. 68.
    Linja MJ, Savinainen KJ, Saramaki OR, et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001; 61:3550–5.PubMedGoogle Scholar
  69. 69.
    Ruizeveld de Winter JA, Janssen PJ, et al. Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am J Pathol 1994; 144:733–46.Google Scholar
  70. 70.
    de Vere White R, Meyers F, Chi SG, et al. Human androgen receptor expression in prostate cancer following androgen ablation. Eur Urol 1997;31:1–5.PubMedGoogle Scholar
  71. 71.
    Majumder PK, Wadhwa SN, Kumar VL. Androgen receptor transcript level in benign hypertrophy and carcinoma of the human prostate. Urol Int 1997;59:2315–20.CrossRefGoogle Scholar
  72. 72.
    Koivisto P, Kononen J, Palmberg C, et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997;57:314–9.PubMedGoogle Scholar
  73. 73.
    Koivisto PA, Helin HJ. Androgen receptor gene amplification increases tissue PSA protein expression in hormone-refractory prostate carcinoma. J Pathol 1999;189:219–23.CrossRefPubMedGoogle Scholar
  74. 74.
    Visakorpi T, Hyytinen E, Koivisto P, et al.In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995;9:401–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Koivisto P, Kolmer M, Visakorpi T, et al. Androgen receptor gene and hormonal therapy failure of prostate cancer. Am J Pathol 1998;152(1):1–9.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Gregory CW, Hamil KG, Kim D, et al. Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 1998;58:5718–24.PubMedGoogle Scholar
  77. 77.
    Ruizeveld de Winter JA, Janssen PJ, Sleddens HM, et al. Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am J Pathol 1994;144:735–46.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Gregory CW, He B, Johnson RT, et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 2001;61:4315–9.PubMedGoogle Scholar
  79. 79.
    Henshall SM, Quinn DI, Lee CS, et al. Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Res 2001;61:423–7.PubMedGoogle Scholar
  80. 80.
    Sadar MD, Hussain M, Bruchovsky N. Prostate cancer: molecular biology of early progression to androgen independence. Endocr Relat Cancer 1999;6:487–502.CrossRefPubMedGoogle Scholar
  81. 81.
    Palmberg C, Koivisto P, Kakkola L, et al. Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 2000; 164:1992–5.CrossRefPubMedGoogle Scholar
  82. 82.
    Palmberg C, Koivisto P, Hyytinen E, et al. Androgen receptor gene amplification in a recurrent prostate cancer after monotherapy with the nonsteroidal potent antiandrogen Casodex (bicalutamide) with a subsequent favorable response to maximal androgen blockade. Eur Urol 1997;31:216–9.PubMedGoogle Scholar
  83. 83.
    Hakimi JM, Rondinelli RH, Schoenberg MP, et al. Androgen-receptor gene structure and function in prostate cancer. World J Urol 1996;14:329–37.CrossRefPubMedGoogle Scholar
  84. 84.
    Kelly HL, Scher HL. Prostate specific antigen decline after antiandrogen withdrawal: the flutamide withdrawal syndrome. J Urol 1993;149:607–9.PubMedGoogle Scholar
  85. 85.
    Taplin ME, Bubley GJ, Ko YJ, et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 1999;59:2511–5.PubMedGoogle Scholar
  86. 86.
    Suzuki H, Akakura K, Komiya A, et al. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 1996;29:153–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Taylor JA, Hirvonen A, Watson M, et al. Association of prostate cancer with vitamin D receptor gene polymorphism. Cancer Res 1996;56:4108–10.PubMedGoogle Scholar
  88. 88.
    Ingles SA, Coetzee GA, Ross RK, et al. Association of prostate cancer with vitamin D receptor haplotypes in African-Americans. Cancer Res 1998;58:1620–3.PubMedGoogle Scholar
  89. 89.
    Allen N, Forrest MS, Key TJ. The association between polymorphisms in the CYP17 and alpha-reductase (SRD5A2) genes and serum androgen concentrations in men. Cancer Epidemiol Biomarkers Prev 2001;10:185–9.PubMedGoogle Scholar
  90. 90.
    Haiman CA, Stampfer MJ, Giovannucci E, et al. The relationship between a polymorphism in CYP17 with plasma hormone levels and prostate cancer. Cancer Epidemiol Biomarkers Prev 2001;10:743–8.PubMedGoogle Scholar
  91. 91.
    Yamada Y, Watanabe M, Murata M, et al. Impact of genetic polymorphisms of 17-hydroxylase cytochrome P-450 (CYP17) and steroid 5alpha-reductase type II (SRD5A2) genes on prostate-cancer risk among the Japanese population. Int J Cancer 2001;92:683–6.CrossRefPubMedGoogle Scholar
  92. 92.
    Nam RK, Toi A, Vesprini D, et al. V89L polymorphism of type-2, 5-alpha reductase enzyme gene predicts prostate cancer presence and progression. Urology 2001;57(1): 199–204.CrossRefPubMedGoogle Scholar
  93. 93.
    Gsur A, Haidinger G, Hinteregger S, et al. Polymorphisms of glutathione-S-transferase genes (GSTP1, GSTM1 and GSTT1) and prostate-cancer risk. Int J Cancer 2001;95:152–5.CrossRefPubMedGoogle Scholar
  94. 94.
    Yang Q, Shan L, Segawa N, et al. Novel polymorphisms in prostate specific antigen gene and its association with prostate cancer. Anticancer Res 2001;21(1A):197–200.PubMedGoogle Scholar
  95. 95.
    Tang YM, Green BL, Chen GF, et al. Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African-Americans, Caucasians and Chinese; oestradiol hydroxylase activity and distribution in prostate cancer cases and controls. Pharmacogenetics 2000;10:761–6.CrossRefPubMedGoogle Scholar

Copyright information

© FESEO 2002

Authors and Affiliations

  • Domingo Navarro Bosch
    • 1
    • 6
  • Juan J. Cabrera Galván
    • 2
    • 4
    • 6
  • Nicolás Chesa Ponce
    • 3
    • 5
    • 6
  • B. Nicolás Díaz-Chico
    • 1
    • 6
    Email author
  1. 1.Departmento de Bioquimica y FisiologíaCentro de Ciencias de la Salud. Universidad de Las PalmasLas Palmas de Gran Canaria
  2. 2.Departamento de Ciencias Médicas y QuirúrgicasCentro de Ciencias de la Salud. Universidad de Las PalmasLas Palmas de Gran Canaria
  3. 3.Departmento de MorfologíaCentro de Ciencias de la Salud. Universidad de Las PalmasLas Palmas de Gran Canaria
  4. 4.Servicio de Anatomía PatológicaHospital Universitario Insular de Gran CanariaLas Palmas de Gran Canaria
  5. 5.Servicio de UrologíaHospital Universitario Insular de Gran CanariaLas Palmas de Gran Canaria
  6. 6.Instituto Canario de Investigación del Cáncer (ICIC)Las Palmas de Gran Canaria

Personalised recommendations