Skip to main content
Log in

The theory of non-arrhenius conductivity in vitreous solid electrolytes

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The relationship for the static conductivity has been derived from the basic principles of fluctuation statistics. This relationship is non-Arrhenius at low temperatures and describes the experimental data with a high accuracy. Reasoning from general considerations, it is demonstrated that neither the “connectivity scheme” nor the Monte Carlo computer models, which predict the purely Arrhenius behavior of the static conductivity in vitreous solid electrolytes at low temperatures, can serve as the basis for the correct description of ion transfer in similar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kincs, J. and Martin, S.W., Non-Arrhenius Conductivity in Glass: Mobility and Conductivity Saturation Effects,Phys. Rev. Lett, 1996, vol. 76, no. 1, pp. 70–73.

    Article  CAS  Google Scholar 

  2. Ngai, K.L. and Rizos, A.K., Parameterless Explanation of the Non-Arrhenius Conductivity in Glassy Fast Ionic Conductors,Phys. Rev. Lett, 1996, vol. 76, no. 8, pp. 1296–1299.

    Article  CAS  Google Scholar 

  3. Maass, P., Meyer, M., Bunde, A. and Dieterich, W., Microscopic Explanation of the Non-Arrhenius Conductivity in Glassy Fast Ionic Conductors,Phys. Rev. Lett, 1996, vol. 77, no. 8, pp. 1528–1531.

    Article  CAS  Google Scholar 

  4. Tatsumisago, M., Saito, T. and Minami, T., Low Temperature Behavior of Frozen α-AgI in Rapidly Quenched Glass Matrices,Solid State Ionics, 1994, vols. 70-71, pp. 394–397.

    Article  CAS  Google Scholar 

  5. Inaguma, Y., Chen Liquan, Itoh, M. and Nakamura, T., Candidate Compounds with Perovskite Structure for High Lithium Ionic Conductivity,Solid State Ionics, 1994, vols. 70-71, pp. 196–202.

    Article  CAS  Google Scholar 

  6. Angell, C.A., Mobile Ions in Amorphous Solids,Ann. Rev. Phys. Chem., 1992, vol. 43, pp. 693–717.

    Article  CAS  Google Scholar 

  7. Bässler, H., Schönherr, G., Abkowitz, M. and Pai, D.M., Hopping Transport in Prototypical Organic Glasses,Phys. Rev. B: Condens. Matter, 1982, vol. 26, no. 6, pp. 3105–3113.

    Google Scholar 

  8. Bondarev, V.N. and Zhukov, V.M., On the Theory of Cationic Substitution in Ionic Conductors,Fiz. Tverd. Tela (Leningrad), 1991, vol. 33, no. 3, pp. 846–853.

    Google Scholar 

  9. Bondarev, V.N. and Pikhitsa, P.V., “Universal” Frequency Response of Disordered Conductors and Related Problems: A Novel Approach,Phys. Lett. A, 1994, vol. 196, pp. 247–252.

    CAS  Google Scholar 

  10. Bondarev, V.N. and Pikhitsa, P.V., Fluctuation Theory of Relaxation Phenomena in Disordered Conductors: How Fitting Laws Such as Those of Kohlrausch and Jonscher Are Obtained from a Consistent Approach,Phys. Rev. B: Condens. Matter, 1996, vol. 54, no. 6, pp. 3932–3945.

    CAS  Google Scholar 

  11. Bässler, H., Localized States and Electronic Transport in Single Component Organic Solids with Diagonal Disorder,Phys. Status Solidi B, 1981, vol. 107, no. 1, pp. 9–54.

    Article  Google Scholar 

  12. Maass, P. and Meyer, M., Conductivity versus Spin-Lattice Relaxation: Contrasting Behavior in a Correlated Disordered Structure,J. Chem. Phys., 1995, vol. 103, no. 13, pp. 5776–5780.

    Article  CAS  Google Scholar 

  13. Palmer, R.G., Stein, D.L., Abrahams, E., and Anderson, P.W., Models of Hierarchically Constrained Dynamics for Glassy Relaxation,Phys. Rev. Lett, 1984, vol. 53, no. 10, pp. 958–961.

    Article  Google Scholar 

  14. Binder, K. and Young, A.P., Spin Glasses: Experimental Facts, Theoretical Concepts, and Open Questions,Rev. Mod. Phys., 1986, vol. 58, no. 4, pp. 801–976.

    Article  CAS  Google Scholar 

  15. Sher, H. and Lax, M., Stochastic Transport in a Disordered Solid: I. Theory, II. Impurity Conduction,Phys. Rev, B: Solid State, 1973, vol. 7, no. 10, pp. 4491–4519.

    Google Scholar 

  16. Carini, G., Cutroni, M., Federico, M., Galli, G., and Tripodo, G., Acoustic Properties and Diffusion in Superionic Glasses,Phys. Rev. B: Condens. Matter, 1984, vol. 30, no. 12, pp. 7219–7224.

    CAS  Google Scholar 

  17. Jonscher, A.K.,Dielectric Relaxation in Solids, London: Chelsea Dielectric, 1983.

    Google Scholar 

  18. Al’tshuler, B.L., Kravtsov, V.E. and Lerner, I.V., Relaxation Time Spectrum in Disordered Conductors,Pis’ma Zh. Eksp. Teor. Fiz., 1987, vol. 45, no. 3, pp. 160–163.

    Google Scholar 

  19. Kob, W. and Barrat, J.-L., Aging in a Lennard-Jones Glass,PhysicaA (Amsterdam), 1999, vol. 263, pp. 234–241.

    Google Scholar 

  20. Almond, D.P., Duncan, J.K. and West, A.R., Analysis of Conductivity Prefactors and Ion Hopping Rates in Agl-Ag2MoO4 Glass,J. Non-Cryst. Solids, 1985, vol. 74, pp. 285–301.

    Article  CAS  Google Scholar 

  21. Kawamura, J. and Shimoji, M., Ionic Conductivity and Glass Transition in Superionic Conducting Glasses (AgI)1-x(Ag20O4), (x = 0.25, 0.30, 0.35): I. Experimental Results in the Liquid and Glassy States, II. Structural Relaxation and Excess-Free Volume Theory,J. Non-Cryst. Solids, 1986, vol. 88, nos. 2–3, pp. 281–294;295–310.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarev, V.N., Pikhitsa, P.V. The theory of non-arrhenius conductivity in vitreous solid electrolytes. Glass Phys Chem 26, 377–382 (2000). https://doi.org/10.1007/BF02732003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732003

Keywords

Navigation