Skip to main content
Log in

Structural model of the Ni2B amorphous alloy from the data of molecular dynamics simulation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The structure of the Ni2B amorphous alloy has been investigated by the molecular dynamics method using the Heine-Abarenkov-Animalu and Animalu potentials. The amorphous state is reached by melting a microcrystal of the appropriate composition with subsequent cooling of the melt. The interatomic distances Ni-Ni, B-B, and Ni-B and the boron coordination numbers with respect to boron and nickel are determined from the calculated partial radial atomic distribution functions (RDFs). It is found that, upon transition from the crystalline state to the amorphous state, the antiprismatic-type structure transforms into the trigonalprismatic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldschmidt, H.,Interstitial Alloys, London: Butter-worths, 1967. Translated under the titleSplavy vnedreniya, Moscow: Mir, 1971, vol. 2.

    Google Scholar 

  2. Ishmaev, S.N., Isakov, S.L., Sadikov, I.P., Svab, E., Koszegi, L., Lovas, A., and Meszaros, Gy., Direct Evidence for B-B Contact in Amorphous Ni2B from High-Resolution Neutron Diffraction,J. Non-Cryst. Solids, 1987, vol. 94, no. 11, pp. 11–21.

    Article  CAS  Google Scholar 

  3. Chudinov, V.G., Nurgayanov, R.R. and Lad’yanov, V.I., Specific Features of the Structure Formation upon Amorphization of the Ni-B and Zr-Be Alloys,Fiz. Tverd. Tela (S.-Peterburg), 1996, vol. 38, no. 5, pp. 1500–1504.

    Google Scholar 

  4. Dyadin, V.M., Chudinov, V.G., Gondyreva, I.L., and Bychkov, V.A.,Programma metoda molekulyarnoi dinamiki, orientirovannaya na modelirovanie fizicheskikh protsessov v VSTP (A Molecular Dynamics Program Intended for Modeling Physical Processes in High-Temperature Superconductors), Available from VINITI, 1991, Physicotechnical Inst., Ural Division, Russian Acad. of Sci., Izhevsk, no. 1537-V91-dep.

    Google Scholar 

  5. Kripyakevich, P.I.,Strukturnye tipy intermetallicheskikh soedinenii (Structural Types of Intermetallic Compounds), Moscow: Nauka, 1977.

    Google Scholar 

  6. Animaly, A.O.E., Electronic Structure of Transition Metals: I. Quantum Defects and Model Potential,Phys. Rev. B: Solid State, 1973, vol. 8, no. 8, pp. 3542–3554.

    Google Scholar 

  7. Shaw, R.V., Exchange and Correlation in Theory of Simple Metals,J. Phys. C: Solid State Phys., 1970, vol. 3, no. 5, pp. 1140–1158.

    Article  Google Scholar 

  8. Lad’yanov, V.I., Logunov, S.P., Kuz’minykh, E.V., Zaitsev, A.V. and Korepanov, A.Yu., Thermal and Concentration Structural Transformations in the Ni-B Melts,Tezisy dokladov VII Vserossiiskoi konferentsii “Stroenie i svoistva metallicheskikh i shlakovykh rasplavov“ (Abstracts of Papers VII All-Russia Conf. “Structure and Properties of Metal and Slag Melts“), Yekate-rinburg, 1994, vol. 2, pp. 43–44.

    Google Scholar 

  9. Suzuki, K., Fukunaga, T., Ito, F. and Vatanabe, I., Dependence of Short-Range Order Structure of the Ni1-xBx Glasses on Composition, inRapidly Quenched Metallic Alloys, Schtib, S. and Warlimont, G., Eds., New York: McGraw-Hill, 1986. Translated under the titleBystrozakalennye metallicheskie splavy, Moscow: Metallurgiya, 1989.

    Google Scholar 

  10. Bakanyi, P., Panissod, P., Durand, J. and Hasegewa, R., Magnetic and NMR Study of Amorphous and Crystalline Ni-B Alloys,J Non-Cryst. Solids, 1984, vols. 61–62, pp. 1189–1193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanova, A.V., Lad’yanov, V.I., Nurgayanov, R.R. et al. Structural model of the Ni2B amorphous alloy from the data of molecular dynamics simulation. Glass Phys Chem 26, 342–345 (2000). https://doi.org/10.1007/BF02731996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02731996

Keywords

Navigation