Skip to main content
Log in

Atomic mechanisms of glass formation in metallic alloys, tendency to glass formation, and structural models

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The factors affecting the tendency of metallic alloys to glass formation have been discussed. The most commonly accepted structural models of amorphous alloys are considered. The Ni80B20 and Ni80Zr20 alloys are studied by the molecular dynamics method. It is demonstrated that the amorphization of these alloys occurs through the same mechanism of formation of low-dimensional nanometric dendrite-like compounds that nucleate in the liquid phase, persist upon glass transition, disturb the order in a metal matrix, and, thus, prevent the transition to the crystalline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kovneristyi, Yu.K., Osipov, E.K., and Trifonova, E.A.,Fiziko-khimicheskie osnovy sozdaniya amorfhykh metallicheskikh splavov (Physicochemical Principles of Development of Amorphous Metallic Alloys), Moscow: Nauka, 1983.

    Google Scholar 

  2. Fizicheskaya entsiklopediya (Physical Encyclopedia), Prokhorov, A.M., Ed., Moscow: Bol’shaya Rossiiskaya Entsiklopediya, 1992, vol. 3.

    Google Scholar 

  3. Lyuborskii, F.E., Prospects of Using Amorphous Alloys in Magnetic Devices, inAmorphous Magnetism II, Levi, R.A. and Hasegawa, R., Eds., New York: Plenum, 1977. Translated under the titleMagnetizm amorfhykh sistem, Moscow: Metallurgiya, 1981.

    Google Scholar 

  4. Belashchenko, D.K.,Struktura zhidkikh i amorfnykh metallov (Structure of Liquid and Amorphous Metals), Moscow: Metallurgiya, 1985.

    Google Scholar 

  5. Uhlman, D.R., Glass Formation,J. Non-Cryst. Solids, 1977, vol. 25, nos. 1–3, pp. 43–85.

    Google Scholar 

  6. Nagel, S.R. and Taue, J., Nearly-Free-Electron Approach to the Theory of Metallic Glass Alloys,Phys. Rev. Lett., 1975, vol. 35, no. 6, pp. 380–383.

    Article  CAS  Google Scholar 

  7. Donald, I.W. and Davies, U.A., Prediction of Glass Forming Ability of Metal Systems,J. Non-Cryst. Solids, 1978, vol. 30, no. 1, pp. 77–86.

    Article  CAS  Google Scholar 

  8. Sarjant, P.I. and Roy, R., A New Approach to the Prediction,Met. Sci. Res. Bull., 1968, vol. 3, no. 3, pp. 265–280.

    Article  Google Scholar 

  9. Metallic Glasses: Papers Presented at a Seminar of the Materials Science Division of the American Society for Metals, 1976, Gilman, J.J. and Leamy, H.J., Eds., Metal Park, Ohio: American Society for Metals, 1978. Translated under the titleMetallicheskie stekla, Moscow: Metallurgiya, 1984.

    Google Scholar 

  10. Turnbull, D. and Cohen, M.U., Free-Volume Model of the Amorphous Phase Glass Transition,J. Chem. Phys., 1958, vol. 29, no. 5, pp. 1049–1054.

    Article  CAS  Google Scholar 

  11. Turnbull, D. and Cohen, M.U., On the Free-Volume Model of the Liquid-Glass Transition,J. Chem. Phys., 1970, vol. 52, no. 6, pp. 3038–3041.

    Article  Google Scholar 

  12. Chen, U.S. and Ravk, B.K., Role of Chemical Bonding in Metallic Glasses,Acta Metall., 1973, vol. 21, no. 4, pp. 395–401.

    Article  CAS  Google Scholar 

  13. Chudinov, V.G., Nurgayanov, R.R., and Lad’yanov, V.I., Features of the Interatomic Interaction Forces and Tendency to Amorphization in the Metal-Metalloid Alloys,Fiz. Khim. Stekla, 1996, vol. 22, no. 3, pp. 299–307 [Glass Phys. Chem. (Engl. transi.), 1996, vol. 22, no. 3, pp. 225–230].

    Google Scholar 

  14. Miroshnichenko, I.S. and Salli, I.V., On the Problem of Structure of Iron Melts upon Strong Supercooling,Izv. Akad. Nauk SSSR, Sen Metall. Topl., 1961, no. 3, pp. 130–131.

  15. Bernai, J.D., Geometry of Structure of Monoatomic Liquids,Nature (London), 1960, vol. 185, no. 4706, pp. 6870.

    Google Scholar 

  16. Polk, D.E., The Structure of Glassy Metallic Alloys,Acta Metall, 1972, vol. 20, no. 4, pp. 485–490.

    Article  CAS  Google Scholar 

  17. Cowlam, N., Guoam Wu, Gardner, P.P., and Davies, N.A., Ni64B36—a Transition Metal-Metalloid Glass with First Neighbour Metalloid Atoms,J. Non-Cryst. Solids, 1984, vols. 61–62, pp. 337–342.

    Article  Google Scholar 

  18. Ishmaev, S.N., Isakov, S.L., and Sadikov, I.P., Direct Evidence for B-B Contact in Amorphous Ni2B from High-Resolution Neutron Diffraction,J. Non-Cryst. Solids, 1987, vol. 94, pp. 11–21.

    Article  CAS  Google Scholar 

  19. Porai-Koshits, E.A., New Results of Investigation into Inhomogeneous Glass Structure,Fiz. Khim. Stekla, 1975, vol. 1, no. 5, pp. 385–394.

    CAS  Google Scholar 

  20. Zentko, A., Duhaj, P., Potocky, L.,et al., Low Field Magnetic Susceptibility of Amorphous CoxPd80-xSi20 and FexPd80-xSi20,Phys. Status Solidi A, 1975, vol. 31, no. l.pp. R41-R42.

    Google Scholar 

  21. Dutvin, P. and Duhaj, P., The Hall-Effect in Pd-Si Based Amorphous Alloys Containing Co,Czechosl. J. Phys. Sect. B: At., Mol. Opt. Phys., 1976, vol. 26, no. 4, pp. 469–476.

    Google Scholar 

  22. Takahashi, M., Kim Chong Oh, Roshimura, M.,et al., Temperature Dependence of Saturation Magnetization in Amorphous Co-B Alloys,Jpn. J. Appl. Phys., 1978, vol. 7, no. 10, pp. 1911–1912.

    Article  Google Scholar 

  23. Hermann, H. and Mattern, N., Analytic Approach to the Structure of Amorphous Iron-Boron Alloys,J. Phys. F: Met. Phys., 1986, vol. 16, no. 2, pp. 131–140.

    Article  CAS  Google Scholar 

  24. Amorph Ferro-und Ferrimagnetika, Handrich, K. and Kobe, S., Eds., Berlin: Springer-Verlag, 1980. Translated under the titleAmorfnye ferroi ferrimagnetiki, Moscow: Mir, 1982.

    Google Scholar 

  25. Glass Metals, I: Ionic Structure, Electronic Transport, and Crystallization, Giintherodt, G.-J. and Beck, H., Eds., Berlin: Springer-Verlag, 1981. Translated under the titleMetallicheskie stekla. Ionnaya struktura, elektronnyi perenos i kristallizatsiya, Moscow: Mir, 1983.

    Google Scholar 

  26. Borisov, V.T., Dukhnin, A.I., and Matveev, Yu.G., Regularities in Formation of Supersaturated Solid Solutions and Amorphous Alloys upon Quenching from Liquid State, inProblemy metallurgii ifiziki metallov (Problems of Metallurgy and Physics of Metals), Moscow: Metallurgiya, 1978, no. 5, pp. 4–16.

    Google Scholar 

  27. Svab, E., Kroo, N., Ischmaev, S.N., Sadikov, I.P., and Chernyshov, A.A., High Resolution Neutron Diffraction Study of Fe81B19 Metallic Glass,Solid State Commun., 1982, vol. 44, no. 8, pp. 1151–1155.

    Article  CAS  Google Scholar 

  28. Matts, V. and Abrosimova, G., Construction of Partial Structure Functions for Fe83B17 Amorphous Alloys by Neutron Diffraction,Metallofizika (Kiev), 1989, vol. 11, no. 4, pp. 36–43.

    Google Scholar 

  29. Bakai, A.S.,Poliklasternye amorfnye tela (Polycluster Amorphous Solids), Moscow: Energoatomizdat, 1987.

    Google Scholar 

  30. Zel’dovich, Ya.B. and Sokolov, D.D., Fractals, Similarity, and Intermediate Asymptotics,Usp. Fiz. Nauk, 1985, vol. 146, no. 3, pp. 493–506.

    Google Scholar 

  31. Ivanov, V.S., Balankin, A.S., Bunin, I.Zh., and Oksogoev, A.A.,Sinergetika i fraktaly v materialovedenii (Synergetics and Fractals in Materials Science), Moscow: Nauka, 1994.

    Google Scholar 

  32. Chudinov, V.G., Nurgayanov, R.R., and Lad’yanov, V.I., Features of Structure Formation in Amorphization of Ni-B and Zr-Be Alloys,Fiz. Tverd. Tela (S.-Peterburg), 1996, vol. 38, no. 5, pp. 1500–1504.

    Google Scholar 

  33. Nurgayanov, R.R., Chudinov, V.G., and Lad’yanov, V.I., Short-Range Order, Atomic Structure, and Dynamics of Ni80Zr20 Alloy,Fiz. Tverd. Tela (S.-Peterburg), 1997, vol. 39, no. 6, pp. 961–963.

    CAS  Google Scholar 

  34. Frenkel, Ya.I,Vvedenie v teoriyu tverdogo tela (Introduction to the Theory of Solids), Moscow: Fizmatgiz, 1958.

    Google Scholar 

  35. Born, M., Thermodynamics of Crystals and Melting,J. Phys. Chem., 1939, vol. 7, pp. 591–603.

    Article  CAS  Google Scholar 

  36. Likhachev, V.A., Volkov, A.E., and Shudegov, V.E.,Kontinual’naya teoriya defektov (Continuum Theory of Defects), Leningrad: Leningrad. Gos. Univ., 1986.

    Google Scholar 

  37. Likhachev, V.A. and Shudegov, V.E., Disclination Model of Silica Glass Structure,Fiz. Khitn. Stekla, 1987, vol. 15, no. 3, pp. 510–513.

    Google Scholar 

  38. Ukhov, V.F., Vatolin, N.A., Gel’chinskii, B.R., Beskachko, V.P., and Esin, O.A.,Mezhchastichnoe vzaimodeistvie v zhidkikh metallakh (Interparticle Interaction in Liquid Metals), Moscow: Nauka, 1979.

    Google Scholar 

  39. Betekhtin, V.I., Glezer, A.M., Kadomtsev, A.G., and Kipyatkova, A.Yu., Excess Free Volume and Mechanical Properties of Amorphous Alloy,Fiz. Tverd. Tela (S.-Peterburg), 1998, vol. 40, no. 1, pp. 85–89.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nurgayanov, P.P., Chudinov, V.G. Atomic mechanisms of glass formation in metallic alloys, tendency to glass formation, and structural models. Glass Phys Chem 26, 335–341 (2000). https://doi.org/10.1007/BF02731995

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02731995

Keywords

Navigation