Skip to main content
Log in

Mathematical models of glass formation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This article presents a theory of glass formation based on the mathematical description of agglomeration at the microscopic level. This theoretical model displays a nonnegligible predictive power when applied to the description of the medium-range order in binary covalent glasses such as borates, binary or ternary chalcogenide glasses, and the best known ternary silicon oxide-based glass. The mathematical approach used consists in spotting first the most stable elementary configurations in glass, treated asbuilding blocks, then a careful counting of all types of clusters containing many such entities and evaluation of the number of different pathways leading to their formation. The probabilities of cluster forming are then computed taking into account the multiplicities (statistical factors) and the Boltzmann factors related to the different energetic costs of various agglomeration processes. The probabilities of characteristic features observed in a given glass (e.g., boroxol rings, edge-sharing or vertex-sharing doublets of rings) are then computed; finally, a system of nonlinear equations can be produced by requiring the time derivatives of these probabilities to vanish, which can be interpreted as thesaturation or thestationary regime of the agglomeration process attained at a relatively early stage of glass formation that also corresponds tominimum fluctuations. The most important result of this type of modeling is the correct prediction of the glass transition temperature dependence on modifier concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips, J.C., Topology of Covalent Non-Crystalline Solids: I. Short-Range Order in Chalcogenide Alloys,J. Non-Cryst. Solids, 1979, vol. 34, no. 2, pp. 153–181.

    Article  CAS  Google Scholar 

  2. Phillips, J.C., Topology of Covalent Non-Crystalline Solids: II. Medium-Range Order in Chalcogenide Alloys and a-Si(Ge),J. Non-Cryst. Solids, 1981, vol. 43, no. 1, pp. 37–77.

    Article  CAS  Google Scholar 

  3. Collins, R.,Proc. Phys. Soc, 1964, vol. 83, p. 553.

    Article  Google Scholar 

  4. Kosterlitz, J.M. and Thouless, D.J., Ordering, Metastability, and Phase Transition in Two-Dimensional Systems,J. Phys. C: Solid State Phys., 1973, vol. 6, pp. 1181–1203.

    Article  CAS  Google Scholar 

  5. Bray, P.J., NMR Studies of the Structures of Glasses,J. Non-Cryst. Solids, 1987, vol. 95/96, pp. 45–60.

    Article  Google Scholar 

  6. Barrio, R.A., Castillo-Alvarado, F.L., and Galeener, F.L., Structural and Vibrational Model for Vitreous Boron Oxide,Phys. Rev. B: Condens. Matter, 1991, vol. 44, pp. 7313–7320.

    CAS  Google Scholar 

  7. Galeener, F.L., Barrio, R.A., Martinez, E., and Elliott, R.J., Vibrational Decoupling of Rings in Amorphous Solids,Phys. Rev. Lett, 1984, vol. 53, no. 25, pp. 2429–2432.

    Article  CAS  Google Scholar 

  8. Thorpe, M.F., Continuous Deformations in Random Networks,J. Non-Cryst. Solids, 1985, vol. 75, pp. 355–360.

    Article  Google Scholar 

  9. Thorpe, M.F., Bulk and Surface Floppy Modes,J. Non-Cryst. Solids, 1995, vol. 182, pp. 135–142.

    Article  CAS  Google Scholar 

  10. Myuller, R.L.,Z. Phys. Chem., 1930, vol. 150 A, no. 5/6, pp. 439–475.

    Google Scholar 

  11. Myuller, R.L.,Electrical Conductivity of Vitreous Substances, New York: Consultants Bureau, 1971.

    Google Scholar 

  12. Porai-Koshits, E.A. and Andreev, N.S., Low-Angle Scattering by Glasses,Nature, 1958, vol. 182, no. 4631, pp. 335–336.

    Article  CAS  Google Scholar 

  13. Porai-Koshits, E.A., The Structure of Glasses,J. Non-Cryst. Solids, 1977, vol. 5, nos. 1–3, pp. 86–128.

    Article  Google Scholar 

  14. Dembovsky, S.A. and Koz’min, P.A., Order, Disorder, and Geometrical Information Indices of Molecules,Russ. Chem. Bull., 1996, vol. 45, no. 8, pp. 1810–1827.

    Article  Google Scholar 

  15. Balmakov, M.D., Configurational Entropy of the Vitreous State,Fiz. Khim. Stekla, 1996, vol. 22, no. 4, pp. 485–501 [Glass Phys. Chem. (Engl. Transl.), 1996, vol. 22, no. 4, pp. 344–355].

    Google Scholar 

  16. Tveryanovich, Yu.S., Low-Temperature Paramagnetism of Glasses: The MnS-GaS1.5-GeS2 System,Fiz. Khim. Stekla, 1994, vol. 20, no. 4, pp. 461–466 [Glass Phys. Chem. (Engl. Transl.), 1994, vol. 20, no. 4, pp. 311–314].

    CAS  Google Scholar 

  17. Kerner, R. and dos Santos, D.M., Nucleation and Amorphous and Crystalline Growth: A Dinamical Model in Two Dimensions,Phys. Rev. B: Condens. Matter, 1988, vol. 37, no. 8, pp. 3881–3893.

    Google Scholar 

  18. Kerner, R. and Micoulaut, M.,C. R. Acad. Sci., Ser. II, 1992, vol. 315, p. 1307.

    CAS  Google Scholar 

  19. Kerner, R., A Model for Formation and Structural Properties of Alkali Borate Glasses,J. Non-Cryst. Solids, 1991, vol. 135, pp. 155–170.

    Article  CAS  Google Scholar 

  20. Kerner, R. and Micoulaut, M., A Theoretical Model of Formation of Covalent Binary Glasses: I. General Setting,J. Non-Cryst. Solids, 1994, vol. 176, no. 2/3, pp. 271–279.

    Article  CAS  Google Scholar 

  21. Kerner, R., Model of Rings in the Amorphous SiO2,J. Non-Cryst. Solids, 1995, vol. 182, pp. 9–21.

    Article  CAS  Google Scholar 

  22. Barrio, R.A., Kerner, R., Micoulaut, M., and Naumis, G.G., Evaluation of the Concentration of Boroxol Rings in Vitreous B2O3 by the Stochastic Matrix Method,J. Phys.: Condens. Matter, 1997, vol. 9, pp. 9219–9234.

    Article  CAS  Google Scholar 

  23. Dos Santos-Loff, D.M., Micoulaut, M., and Kerner, R., Statistics of Boroxol Rings in Vitreous Boron Oxide,Eur. Lett, 1994, vol. 28, no. 8, pp. 573–578.

    Article  CAS  Google Scholar 

  24. Zachariasen, W.H., The Atomic Arrangement in Glass,J. Am. Ceram. Soc, 1932, vol. 54, no. 10, pp. 3841–3851.

    CAS  Google Scholar 

  25. Zarzycki, J.,Les verres et l’état vitreux, Paris: Masson, 1982.

    Google Scholar 

  26. Elliott, S.R.,Physics of Amorphous Materials, Longman Scientifical & Technical, 1990.

  27. The Physics and Technology of Amorphous SiO 2, Devine, R.A.B., Ed., New York: Plenum, 1987.

    Google Scholar 

  28. Feltz, A., Aust, H., and Blayer, A., Glass Formation and Properties of Chalcogenide Systems: XXVI. Permittivity and the Structure of Glasses AsxSe1 -x and GexSe1-x,J. Non-Cryst Solids, 1983, vol. 55, pp. 179–190.

    Article  CAS  Google Scholar 

  29. Micoulaut, M., Kerner, R., and dos Santos-Loff, D.M., Statistical Modeling of Structural and Thermodynamical Properties of Vitreous B2O3,J. Phys. C: Solid State Phys., 1995, vol. 7, no. 42, pp. 8035–8052.

    CAS  Google Scholar 

  30. Kerner, R. and Micoulaut, M., A Model of Glass Transition in Binary and Ternary Glasses,J. Mol. Liq., 1997, vol. 71, pp. 175–181.

    Article  CAS  Google Scholar 

  31. Kerner, R., A Theory of Glass Formation, inAtomic Diffusion in Disordered Materials, Balkanski, M. and Elliott, R.J., Eds., New York: World Scientific, 1998, pp. 25–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Continuation, see also the preceding issue. The publication of the Proceedings will be continued in the next issue of the journal.

The article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerner, R. Mathematical models of glass formation. Glass Phys Chem 26, 313–324 (2000). https://doi.org/10.1007/BF02731992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02731992

Keywords

Navigation