Skip to main content
Log in

Technique for measuring the electric conductivity of glasses and melts over a wide temperature range covering the glass transition region

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The technique for measuring the electric conductivity of glass-forming melts and glasses over a wide temperature range covering the glass transltion region is described in detail. The technique is based on the application of small-sized electrodes that provide the retention of their mutual arrangement in melts and glasses and prevent the appearance of mechanical stresses exceeding the ultimate strength of glasses. The potentialities of the proposed technique are illustrated by the measurement of the electric conductivity for several standard glasses. The coefficients of equations describing the temperature dependences of the electric conductivity above and below the glass transltion range are determined. The technique makes it possible to obtain the hysteresis loops of the electric conductivity at constant rates of cooling and the subsequent heating and also the temperature dependences of the first and second derivatives of the electric conductivity with respect to temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazurin, O.V., Electrical Properties of a Glass,Tr. Leningr. Tekhnol. Inst. im. Lensoveta, 1962, no. 62.

  2. Ingram, M.D., Ionic Conductivity in Glass,Phys. Chem. Glasses, 1987, vol. 26, no. 6, pp. 215–234.

    Google Scholar 

  3. Leko, V.K. and Brailovskii, V.B., Setup Design and Technique of Measuring the Dielectric Properties of Glasses at Frequencies up to 106 Hz over Wide Temperature Range, inElektronnoe priborostroenie (Electronic Instrument Making), Moscow: Energiya, 1965, pp. 100–107.

    Google Scholar 

  4. Mazurina, E.K., Influence of Bivalent Metal Oxides on the Electric Conductivity of Alkali Silicate Glasses in the Temperature Range 200–1400‡C,Cand. Sci. Dissertation, Leningrad: Lensovet Technol. Inst., 1967.

    Google Scholar 

  5. Kaneko, H. and Isard, J.O., The Effect of Structural Changes in the Transformation Range on the Electrical Conductivity of Glass,Phys. Chem. Glasses, 1968, vol. 9, no. 3, pp. 84–90.

    CAS  Google Scholar 

  6. Filipovich, V.N., Theoretical Problems of Ionic Electric Conductivity in Alkali Silicate Glasses,Wiss. Z. Friedrich-Schiller-Univ. Jena: Naturwiss. Reihe, 1979, vol. 28, nos. 2–3, pp. 317–329.

    Google Scholar 

  7. Roling, B., What Do Electrical Conductivity and Electrical Modulus Spectra Tell Us about the Mechanisms of Ion Transport Processes in Melts, Glasses and Crystals?,J. Non-Cryst. Solids, 1999, vol. 244, no. 1, pp. 34–43.

    Article  CAS  Google Scholar 

  8. Anderson, O.L. and Stuart, D.A., Calculation of Activation Energy of Ionic Conductivity in Silica Glasses by Classical Methods,J. Am. Ceram. Soc., 1954, vol. 37, no. 12, pp. 573–581.

    Article  CAS  Google Scholar 

  9. Cohen, M.H. and Turnbull, D., Molecular Transport in Liquids and Glasses,J. Chem. Phys., 1959, vol. 31, no. 5, pp. 1164–1169.

    Article  CAS  Google Scholar 

  10. Tickle, R.F., The Electrical Conductance of Molten Alkali Silicates: Part 2. Theoretical Discussion,Phys. Chem. Glasses, 1967, vol. 8, no. 3, pp. 101–111.

    CAS  Google Scholar 

  11. Macedo, P.B. and Litovitz, T.A., On the Relative Roles of Free Volume and Activation Energy in the Viscosity of Liquids,J. Chem. Phys., 1965, vol. 42, no. 5, pp. 245–256.

    Article  CAS  Google Scholar 

  12. Evstrop’ev, K.S., History of Research on the Electrical Properties of Glasses, inThe Structure of Glass, New York: CB, 1965, vol. 4, pp. 59–63.

    Google Scholar 

  13. Startsev, Yu.K., Klyuev, V.P., and Vostrikova, M.S., Determination of Glass transltion Temperatures from Simultaneously Recorded Dependences of Thermal Expansion and Electric Conductivity,Fiz, Khim. Stekla, 1978, vol. 4, no. 3, pp. 278–288.

    CAS  Google Scholar 

  14. Scherer, G.W.,Relaxation in Glass and Composites, New York: Wiley, 1986.

    Google Scholar 

  15. Nemilov, S.V.,Thermodynamic and Kinetic Aspects of the Vitreous State, Boca Raton: CRC, 1995.

    Google Scholar 

  16. Startsev, Yu.K., Schütt, H.-Ju., and Vostrikova, M.S., On the Relation between Relaxations of the Electric Conductivity and the Viscosity of Window Glass in the Glass transltion Range,Fiz. Khim. Stekla, 1981, vol. 7, no. 2, pp. 165–169.

    CAS  Google Scholar 

  17. Mazurin, O.V.,Steklovanie (Glass transltion), Leningrad: Nauka, 1986.

    Google Scholar 

  18. Certificate on Standard Reference Material 710a: Soda-Lime-Silica Glass, 1962;Certificate on Standard Reference Material 711: Lead-Silica Glass, 1964;Certificate on Standard Reference Material 1414a: Lead-Silica Glass High-Temperature Resistivity, 1969; Washington: Nat. Inst. Stand. Technol.

  19. Tekhnicheskoe opisanie i instruktsiya po ekspluatatsii E7-8—izmeritel’L, C, R tsifrovoi (Description and Operating Instructions for E7-8 DigitalL-, C-, and R-Meter), Kaunas: NIIRIT, 1991.

  20. E7-12—izmeritel’ L, C, R tsifrovoi. Tekhnicheskoe opisanie i instruktsiya po ekspluatatsii (E7-12 DigitalL-,C-, and R-Meter: Description and Operating Instructions), Kaunas: NIIRIT, 1991.

  21. Landau, L.D. and Lifshitz, E.M.,Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Fizmatgiz, 1959, pp. 324–333.

    Google Scholar 

  22. Programmnyi regulyator temperatury PTR-105. Tekhnicheskoe opisanie i instruktsiya po ekspluatatsii (PTR-105 Programmable Temperature Controller: Description and Operating Instructions), St. Petersburg: JS THER-MEX, 1992.

  23. Vol’tmetr universal’nyi tsifrovoi V7-28. Tekhnicheskoe opisanie i instruktsiya po ekspluatatsii (V7-28 Universal Digital Voltmeter: Description and Operating Instructions), Minsk, 1981.

  24. Mazurin, O.V., Analysis of the Temperature Dependences of Some Properties for High-Viscosity Liquids on the Basis of Modern Concepts of Structural Relaxation,Wiss. Z. Friedrich-Schiller-Univ. Jena: Naturwiss. Reihe, 1979, vol. 28, nos. 2–3, pp. 507–520.

    CAS  Google Scholar 

  25. Boulos, E.N., Smith, J.W., and Moynihan, CT., Rapid and Accurate Measurements of Electrical Resistivity in Glass Melts,Glastech. Ber., 1983, vol. 56K, pp. 509–514.

    Google Scholar 

  26. Mazurin, O.V. and Prokhorenko, O.A., personal communication, 1994.

  27. Tool, A.Q., Relation between Inelastic Deformability and Thermal Expansion of Glass in Its Annealing Range,J. Am. Ceram. Soc., 1946, vol. 29, no. 9, pp. 240–253.

    Article  CAS  Google Scholar 

  28. Sanin, V.N., Anharmonic Effects in Silicate Glasses,Fiz. Khim. Stekla, 1996, vol. 22, no. 3, pp. 261–274 [Glass Phys. Chem. (Engl. transl.), 1996, vol. 22, no. 3, pp. 196–206].

    Google Scholar 

  29. Wang, K. and Reeber, R.R., A Model for Evaluating and Predicting High-Temperature Thermal Expansion,J. Mater. Res., 1996, vol. 11, no. 7, pp. 1800–1803.

    Article  CAS  Google Scholar 

  30. Klyuev, V.P., Dilatometric Method for Measuring the Thermal Expansion of Softened Glass in the Viscosity Range 1010-105 P,Fiz. Khim. Stekla, 1997, vol. 23, no. 1, pp. 137–143 [Glass Phys. Chem. (Engl. transl.), 1997, vol. 23, no. 1, pp. 94–98].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Startsev, Y.K. Technique for measuring the electric conductivity of glasses and melts over a wide temperature range covering the glass transition region. Glass Phys Chem 26, 73–82 (2000). https://doi.org/10.1007/BF02731947

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02731947

Keywords

Navigation