On the renormalization of the axial vector coupling constant in β-decay


The models of the axial vector current discussed byGell-Mann andLévy are examined further. Generalized Ward identities are derived for the axial vector weak vertex. It is then shown that in theσ model and the non-linear model the renormalization factor —G A/G may be expressed as a matrix element in the theory of strong interactions. Thus in theσ model, which is renormalizable, —G A/G is finite in every order. Since —G A/G exhibits divergences in the non-linear model, that model is not renormalizable in the usual sense.


Si esaminano ulteriormente i modelli della corrente vettoriale assiale discussi daFeynman, Gell-Mann eLévy. Si derivano identità generalizzate di Ward per il vertice debole del vettore assiale. Si mostra poi che nel modelloσ e nel modello non lineare il fattore di rinormalizzazione —G A/G può essere espresso come un elemento di matrice nella teoria delle interazioni forti. Così nel modelloσ, che è rinormalizzabile, —G A/G è finito in ogni ordine. Poichè —G A/G presenta divergenze nel modello non lineare, questo modello non è rinormalizzabile nel senso usuale.

This is a preview of subscription content, access via your institution.


  1. (1)

    S. S. Gershtein andJ. B. Zeldovich:Žurn. Ėksp. Teor. Fiz.,29, 698 (1955).

    Google Scholar 

  2. (2)

    R. P. Feynman andM. Gell-Mann:Phys. Rev.,109, 193 (1958).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  3. (3)

    M. Gell-Mann andM. Lévy: to be referred to as A. We shall employ the notation of that article and we shall quote equations from it as (A.1) (A.2), etc.

  4. (4)

    S. Okubo:Nuovo Cimento,13, 292 (1959).

    MathSciNet  Article  Google Scholar 

  5. (5)

    R. Utiyama, S. Sunakawa andT. Imamura:Progr. Theor. Phys.,8, 77 (1952).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  6. (6)

    Identities of this type have been studied in the limit of a conserved axial vector current byS. Weinberg (private communication toJ. Bernstein).

  7. (7)

    S. Weinberg:Phys. Rev.,112, 1375 (1958).

    ADS  Article  MATH  Google Scholar 

  8. (8)

    M. L. Goldberger andS. B. Treiman:Phys. Rev.,111, 354 (1958).

    ADS  Article  MATH  Google Scholar 

  9. (9)

    Y. Takahashi:Nuovo Cimento,6, 371 (1957).

    Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Bernstein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bernstein, J., Gell-Mann, M. & Michel, L. On the renormalization of the axial vector coupling constant in β-decay. Nuovo Cim 16, 560–568 (1960). https://doi.org/10.1007/BF02731920

Download citation