Skip to main content
Log in

Cabibbo mixing from strong-interaction condensates

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

In a scenario where the down and strange quark weak-interaction eigenstates are given a current mass, it is argued that a likely pattern of chiral symmetry breaking is one in which\(\left\langle {\bar uu} \right\rangle ,\left\langle {\bar dd} \right\rangle \) and\(\left\langle {\bar sd} \right\rangle = \left\langle {\bar ds} \right\rangle \) condensates form, the latter either instead of, or in addition to, an\(\left\langle {\bar ss} \right\rangle \) condensate. This results in a dynamical mixing contribution to the effectives-d mass matrix. Using previous estimates of quark mass ratios, the resulting Cabibbo angle is computed to be (13±4)°. A consistent solution is reached with zero Lagrangian mass for the up quark, providing a possible solution to the strongCP problem. In the absence of weak interactions,\(\left\langle {\bar sd} \right\rangle = \left\langle {\bar ds} \right\rangle = 0\), but\(\lim x \to \infty \left\langle {\bar s(x) d(x) \bar d(0) s(0)} \right\rangle \ne 0\), corresponding to a condensate of spatially noncorrelated\(\bar sd/\bar ds\) pairs, and plays a nearly identical role. Pauli-principle effects give this pair-condensed vacuum a lower energy than the usual spontaneously broken vacuum solution, and produces an allowed violation of cluster decomposition. Strangeness is not spontaneously broken, and no unwanted Goldstone bosons result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Serber: inThe Birth of Particle Physics, edited byL. M. Brown andL. Hoddeson (Cambridge University Press, Cambridge, 1983), p. 217.

    Google Scholar 

  2. G.’t Hooft:Phys. Rev. Lett.,37, 8 (1976);Phys. Rev. D,14, 3432 (1976).

    Article  ADS  Google Scholar 

  3. L. Susskind:Phys. Rev. D,20, 2619 (1979),S. Weinberg:Phys. Rev. D,19, 1277 (1979).

    Article  ADS  Google Scholar 

  4. H. D. Politzer:Nucl. Phys. B,117, 397 (1976);M. D. Scadron:Ann. Phys. (N.Y.),148, 257 (1983);V. Elias andM. D. Scadron:Phys. Rev. D,30, 647 (1984).

    Article  ADS  Google Scholar 

  5. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn andV. F. Weisskopf:Phys. Rev. D,9, 3471 (1974);A. Chodos, R. L. Jaffe, K. Johnson andC. B. Thorn:Phys. Rev. D,10, 2599 (1974);T. DeGrand, R. L. Jaffe, K. Johnson andJ. Kiskis:Phys. Rev. D,12, 2060 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  6. See, for instance,A. de Shalit andH. Feshbach:Theoretical Nuclear Physics, Vol.1 (John Wiley and Sons, New York, N.Y., 1974), p. 126.

    Google Scholar 

  7. M. Kobayashi andT. Maskawa:Prog. Theor. Phys.,49, 652 (1973).

    Article  ADS  Google Scholar 

  8. Particle Data Group:Phys. Lett. B,239, 1 (1990).

    Google Scholar 

  9. J. Gasser andH. Leutwyler:Phys. Rep.,87, 77 (1982);Ann. Phys. (N.Y.),158, 142 (1984);Nucl. Phys. B,250, 465 (1985).

    Article  ADS  Google Scholar 

  10. F. E. Close:Introduction to Quarks and Partons (Academic Press, New York, N.Y., 1979), p. 127.

    Google Scholar 

  11. W. Feilmair, M. Faber andH. Markum:Phys. Rev. D,39, 1409 (1989).

    Article  ADS  Google Scholar 

  12. T.-P. Cheng andL.-F. Li:Gauge Theory of Elementary Particle Physics (Oxford University Press, New York, N.Y., 1984), p. 408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grady, M. Cabibbo mixing from strong-interaction condensates. Nuov Cim A 105, 1065–1079 (1992). https://doi.org/10.1007/BF02730866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02730866

PACS

PACS

PACS

Navigation