Skip to main content
Log in

Energy deposition of (100 ÷ 300) MeV electrons

Выделение знергии злектронами с знергиями (100÷300) МзВ

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The calculations for the energy deposition of (100 ÷ ÷ 300) MeV electrons have been carried out by EGS-3 shower code. The code is suitable for calculations for the energies ranging from 10 MeV to 1 GeV. The energies of the incident electrons were 100, 150, 200, 250 and 300 MeV. Detailed energy profiles for the radial energy deposition in copper are presented. Also radial and axial showers in water, carbon, steel, copper, tungsten and lead were investigated for comparison. A comparison with the published data is made.

Riassunto

Si effettuano i calcoli per la deposizione di energia di elettroni a (100 ÷ 300) MeV utilizzando il codice di sciame EGS-3. Il codice è adatto per calcoli per energie che vanno da 10 MeV a 1 GeV. Le energie degli elettroni incidenti sono di 100, 150, 200, 250 e 300 MeV. Si presentano profili dettagliati dell’energia per la deposizione radiale di energia nel rame. Si studiano per un confronto anche gli sciami radiali e assiali in acqua, carbone, acciaio, rame, tungsteno e piombo. Si fa un confronto con i dati pubblicati.

Реэюме

Испольэуя ливневый код ЕGS-3, проводятся вычисления выделения знергии злектронами с знергиями (100÷300) МзВ. Укаэанный код удобен для вычислений в области знергий от 10 МзВ до 1 ГзВ. Рассмотрены знергии падаюших злектронов 100, 150, 200, 250 и 300 МзВ. Приводятся подробные знергетические профили для радиального выделения знергии в меди. Для сравнения исследуются также радиальные и аксиальные ливни в воде, углероде, стали, меди, вольфраме и свинце. Проводится сравнение с опубликованными данными.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Rossi:High Energy Particles (Prentice-Hall Inc., Englewood Cliffs, N. J., 1956).

    Google Scholar 

  2. R. G. Alsmiller jr.,J. Barish andS. R. Dodge:Nucl. Instrum. Methods,121, 161 (1974).

    Article  ADS  Google Scholar 

  3. M. J. Berger andS. M. Seltzer:Tables of energy losses and ranges of electrons and positrons, NASA SP-3012, National Aeronautics and Space Administration (1984).

  4. H. L. Beck:Nucl. Instrum. Methods,78, 333 (1970).

    Article  ADS  Google Scholar 

  5. H. H. Nagel andC. Schlier:Z. Phys.,174, 474 (1963).

    Article  ADS  Google Scholar 

  6. C. D. Zerby andH. S. Moran:Studies of the longitudinal development of high energy electron-photon cascade showers in copper, ORNL-3329, Oak Ridge National Laboratory (1962).

  7. A. Kantz andR. Hofstadter:Phys. Rev.,89, 603 (1953).

    Article  ADS  Google Scholar 

  8. C. D. Zerby andH. S. Moran:Studies of the longitudinal development of high energy energy electron-photon cascade showers in copper, ORNL-3329, Oak Ridge National Laboratory (1962).

  9. M. J. Berger:Monte Carlo calculations of the deep penetration and diffusion of fast charged particles, inMethods in Computational Physics, Vol. I, edited byB. Adler, S. Fernbach andM. Rotendry (Academic Press, New York, N. Y., 1963).

    Google Scholar 

  10. T. A. Mehlhorn andJ. A. Halbleib:Monte Carlo benchmark calculations of energy deposition by electron/photon showers up to 1 GeV, inAdvances in Reactor Computations, Proceedings of a Topical Meeting, ISBN 0-89448-111-8 (March 1983), p. 608.

  11. M. J. Berger andS. M. Seltzer:Electron Monte Carlo code system for electron-photon transport through extended media, CCC-107, Radiation Shielding Information Centre, Computer Code Collection, Oak Ridge National Laboratory, Oak Ridge, Tenn. (1968).

    Google Scholar 

  12. T. M. Jordan: BETA-II,a time dependent, generalized geometry Monte Carlo program for bremsstrahlung and electron transport analysis, Applied Research Technology Corporation, ART-60, Los Angeles, Cal. (1971).

    Google Scholar 

  13. H. M. Colbert: SANDYL:a computer code for calculating combined photon-electron transport in complex systems, Sandia National Laboratory, SLL-74-0012 (1973).

  14. J. A. Halbleib jr.: ACCEPT:a three dimensional electron/photon Monte Carlo code using combinational geometry, Sandia National Laboratory, SAND79-0415 (1979).

  15. J. M. Mack:Computational methods of electrons/photon transport, inAdvances in Reactor Computational, Proceedings of a Topical Meeting, ISBN 0-89448-1111-8 (March 1983), p. 595.

  16. R. L. Ford andW. R. Nelson: EGScode, Stanford Linear Accelerator Centre, report No. 210, Stanford, Cal. (June 1978).

  17. G. R. Stevenson:A cylindrical geometry package from Howar in EGSelectron-gamma shower program, No. H5-RP/TM/80-78, Stanford Linear Accelerator Laboratory Stanford, Cal. (25 Novembre 1980).

  18. D. W. O. Rogers:Nucl. Instrum. Methods,199, 531 (1982).

    Article  Google Scholar 

  19. P. S. Takhar:Bull. Am. Phys. Soc.,29, No. 7, 1111 (1984).

    Google Scholar 

  20. R. Maas andA. Hurkmanns:Calculations of the longitudinal and lateral distribution of energy deposition of (100 ÷ 500) MeVelectrons in some materials, Instituut voor kernphysisch onderzoek, IKO (1979).

  21. S. M. Berger andM. J. Berger:Bull. Phys. Soc.,29, No. 7, 1123 (1984).

    Google Scholar 

  22. E. Storm andH. I. Israel:At. Data Nucl. Data Tables,7, 565 (1970).

    Article  ADS  Google Scholar 

  23. W. Heitler:The Quantum Theory of Radiation (Clarendon Press, Oxford, 1954).

    MATH  Google Scholar 

  24. H. A. Bethe:Phys. Rev.,89, 1256 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S. Goudsmit andJ. L. Saunderson:Phys. Rev.,57, 24 (1940);58, 36 (1940).

    Article  ADS  MATH  Google Scholar 

  26. H. Messel andD. F. Crawford:Electron-Photon Shower Distribution Function (Pergamon Press, Oxford, 1970).

    Google Scholar 

  27. M. J. Berger andS. M. Seltzer:Nucl. Instrum. Methods,104, 317 (1972).

    Article  ADS  Google Scholar 

  28. T. W. Armstrong andR. G. Alsmiller jr.:Nucl. Instrum. Methods,82, 289 (1970).

    Article  ADS  Google Scholar 

  29. R. M. Sternheimer andR. F. Peierls:Phys. Rev. B,3, 3681 (1971).

    Article  ADS  Google Scholar 

  30. A. J. Cook andL. J. Shustek: SLAC Computation Research Group report CGTM No. 165 (1975).

  31. R. Wilson:Phys. Rev.,86, 261 (1952).

    Article  ADS  Google Scholar 

  32. J. A. Jansen, G. J. Veenhof andC. Devries:Nucl. Instrum. Methods,74, 20 (1969).

    Article  ADS  Google Scholar 

  33. K. L. Brown andG. W. Tautfest:Rev. Sci. Instrum.,27, No. 9, 696 (1956).

    Article  ADS  Google Scholar 

  34. G. Beer: Ph.D. Thesis, University of Saskatchewan, Canada.

  35. J. F. Hague R. E. Jennings andR. E. Rand:Nucl. Instrum. Methods,24, 456 (1963).

    Article  ADS  Google Scholar 

  36. J. Kretschko:Nucl. Instrum. Methods,16, 16 (1929).

    Google Scholar 

  37. D. W. O. Rogers:Nucl. Instrum. Methods,227, 535 (1984).

    Article  ADS  Google Scholar 

  38. D. W. O. Rogers:Health Phys.,46, No. 4, 891 (1984).

    Article  Google Scholar 

  39. D. W. O. Rogers:Phys. Med. Biol.,29, 1555 (1984).

    Article  Google Scholar 

  40. P. S. Takhar:Nucl. Phys. A, to be published.

  41. P. S. Takhar:Nuovo Cimento A,89, 76 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takhar, P.S. Energy deposition of (100 ÷ 300) MeV electrons. Nuov Cim A 92, 57–71 (1986). https://doi.org/10.1007/BF02730427

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02730427

PACS

Navigation