Skip to main content
Log in

Feynman path integrals on manifolds and geometric methods

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

We discuss some geometric aspects of the Feynman path integral approach for a nonrelativistic Hamiltonian system. Path integrals are considered for the case in which the underlying manifold is multiply connected and the contributions of different homotopy classes of paths are analysed by using covering spaces. Finally, we investigate path integrals for identical particles.

Riassunto

Si discutono alcuni aspetti geometrici dell’approccio all’integrale del percorso di Feynman per un sistema hamiltoniano non relativistico. Si considerano gli integrali di percorso per il caso in cui la molteplicità sottostante è molteplicemente connessa e si analizzano i contributi di diverse classi di omotopia dei percorsi mediante gli spazi di ricoprimento. Infine, si studiano gl’integrali di percorso per particelle identiche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Feynman:Rev. Mod. Phys.,20, 367 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  2. R. P. Feynman andA. R. Hibbs:Quantum Mechanics and Path Integrals (New York, N. Y., 1965).

  3. B. Kostant:Quantization and Unitary Representations, Lecture Notes in Mathematics, Vol.170 (Berlin, Heidelberg and New York, N. Y., 1970), p. 87.

    Article  MathSciNet  Google Scholar 

  4. J. M. Souriau:Structure des systèmes dynamiques (Paris, 1970).

  5. D. J. Simms: inFeynman Path Integrals, Proceedings Marseille, 1978, edited byS. Albeverio, Ph. Combe, R. Høegh-Krohn, G. Rideau, M. Sirugue-Collin, M. Sirague andR. Stora,Lecture Notes in Physics, Vol.106 (Berlin, 1979), p. 220.

  6. J. S. Dowker:J. Phys. A,5, 936 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Tarski: inDifferential Geometric Methods in Mathematical Physics, Proceedings Clausthal, 1980, edited byH. D. Doebner,Lecture Notes in Mathematics, Vol.905 (Berlin, to appear).

  8. K. Ito: inProceedings of the V Berkeley Symposium on Mathematical Statistics and Probability, Vol.2, Part I (Berkeley, Cal., 1966).

  9. H. P. Berg andJ. Tarski:J. Phys. A,14, 2207 (1981).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. J. Tarski: inFunctional Integration and its Applications, edited byA. M. Arthurs (London, 1975), p. 169.

  11. H. P. Berg andJ. Tarski:Functional Integration, Theory and Applications, Proceedings, Louvain-la-Neuve, 1979, edited byJ.-P. Antoine andE. Tirapegui (New York, N. Y., and London, 1980), p. 125.

  12. D. J. Simms andN. M. J. Woodhouse:Lectures on Geometric Quantization, Lecture Notes in Physics, Vol.53 (Berlin, 1976).

  13. M. G. G. Laidlaw andC. Morette DeWitt:Phys. Rev. D,3, 1375 (1975).

    Article  ADS  Google Scholar 

  14. E. H. Spanier:Algebraic Topology (New York, N. Y., 1966).

  15. J, Tarski:Functional Integration, Theory and Applications, Proceedings, Louvainla-Neuve, 1979, edited byJ.-P. Antoine andE. Tirapegui (New York, N. Y., and London, 1980), p. 143.

  16. J. L. Doob:Trans. Am. Math. Soc.,77, 86 (1954).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, H.P. Feynman path integrals on manifolds and geometric methods. Nuov Cim A 66, 441–449 (1981). https://doi.org/10.1007/BF02730365

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02730365

Navigation