Skip to main content
Log in

On the properties of torsions in Riemann-Cartan space-times. III: Classification of torsion and general discussion

О свойствах кручений в пространстве-времени Римана-Картана III: Классификация кручения и общая дискуссия

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

This is the third paper in a series of three papers which considers the physical properties of torsions in Riemann-Cartan space-timesU 4. Paper III briefly considers some of the simpler generalizations of the ECSK theory together with their covering theories, and a simple classification scheme for torsions is introduced that depends in part on the Weyl conformal curvature tensor. Moreover, further consideration is given to the possible physical role of the third-order «spin» tensor of Lanczos and to observations that could be made with spinning and nonspinning test particles. In particular, we consider the possible importance of the LanczosV 4 variational identity with Riemannian constraints in connection with speculations concerning the question of their microphysical significance.

Riassunto

Questo è il terzo di una serie di tre lavori che riguardano le proprietà fisiche delle torsioni negli spazi-tempoU 4 di Riemann-Cartan. Il lavoro III considera brevemente alcune delle più semplici generalizzazioni della teoria di ECSK, insieme con le loro teorie di copertura, e si introduce un semplice schema di classificazione per torsioni, che dipende in parte dal tensore di curvatura conformale di Weyl. Inoltre, si dà ulteriore considerazione al possibile ruolo fisico del tensore di «spin» di terz'ordine di Lanczos e alle considerazioni che si potrebbero fare con particelle test spinning e non spinning. In particolare, si considera la possibile importanza dell'identità variazionale del LanczosV 4 con vincoli riemanniani in rapporto alle speculazioni che riguardano la questione del loro significato microfisico.

Резюме

Эта работа представляет третью статью из серии, посвященной исследованию физических свойств кручений в пространстве-времениU 4 Римана-Картана. В этой статье вкратце рассматриваются некоторые простые обобщения теории Эйнштейна-Картана-Шиама-Киббла. Вводится простая схема классификации для кручений, которая частично зависит от конформного техзора кривизны Вейля. Также обсуждаются возможная физическая роль «спинового» тензора третьего порядка Ланцоша и измерения, которые могли бы быть проведены с «вращающимися» и «невращающимися» пробными частицами. В частности, мы отмечаем важностьV 4 вариационного тождества Ланцоша с ограничениями Римана в связи с рассуждениями, касающимися вопроса о их микрофизической значимости.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Hehl, P. von der Heyde, G. D. Kerlick andJ. M. Nester:Rev. Mod. Phys.,48, 393 (1976). See this review article for other references relating to the ECSK theory. In this paper we essentially follow definitions and notations ofJ. A. Schouten:Ricci Calculus (Berlin, 1952).

    Article  ADS  Google Scholar 

  2. J. M. Nester,Canonical formalism and ECSK theory, Dissertation (College Park, Md., 1976). While aspects of the equivalence of these formalism have been discussed by others (1), it appears thatNester (2) was the first to rigorously prove it in detail. Moreover, it appears that this type of complete formal equivalence could be proven in the case of Sandberg's theory (11) for all types of matter Lagrangians.

  3. In this connection, see the comments inHehl et al. (1). As an example of the recent attempts to provide gravitational theory with a satisfactory gauge theory formulation (particularly, the formulation of the ECSK theory as a gauge theory of the Poincaré group) see the recent papers byY. M. Cho:Phys. Rev. D,14, 2521, 3335, 3341 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Trautman:Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 23, 467 (1972).

    Google Scholar 

  5. A. Trautman:New York Acad. Sci.,262, 241 (1975).

    Article  ADS  Google Scholar 

  6. W. Kopczyński:Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys.,23, 467 (1975).

    Google Scholar 

  7. F. W. Hehl, G. D. Kerlick andP. von der Heyde:Phys. Lett.,63 B, 446 (1976);F. W. Hehl, G. D. Kerlick, E. A. Lord andL. L. Smalley:Hypermomentum and the microscopic violation of the Riemannian constraint in general relativity, University of Köln preprint (1977).

    Article  ADS  Google Scholar 

  8. For further discussion of the variational principles of ECSK and simple covering theories seeW. K. Atkins, W. M. Baker andW. R. Davis:Phys. Lett.,61 A, 363 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Lanczos:Rev. Mod. Phys.,34, 379 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. V. Sandberg:Phys. Rev. D,12, 3013 (1975).

    Article  ADS  Google Scholar 

  11. A. Einstein:The Meaning of Relativity, 4th edition (Princeton, N.J.,1953), appendix II. For a discussion of the possible connection of this type of projective invariance property with particle number conservation, seeW. R. Davis:Lett. Nuovo Cimento,18, 319 (1977).

  12. E. Schrödinger:Space-Time Structure (Cambridge, 1954), appendix.

  13. A Bianchi type-I cosmological model with ECSK-Dirac spin distribution provides another example of trivector torsion. In this connection see, for example,G. D. Gerlick:Spin and torsion in general relativity: foundations, and implications for astrophysics and cosmology, Dissertation (Princeton, N.J., 1975).

  14. The standard ECSK-type torsion, relating to spin-spin contact interactions, does not directly propagate (see, for example, ref. (1).

    Article  Google Scholar 

  15. In this connection, see ref. (9) andW. R. Davis, L. H. Green andL. K. Norris:Comp. Math. Appl.,1, 361 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  16. C. Lanczos:Ann. Math.,39, 842 (1938).

    Article  MathSciNet  Google Scholar 

  17. Ref. (9).

    Article  MathSciNet  ADS  Google Scholar 

  18. In this connection see ref. (9) andH. Takeno:Tensor N. S.,14, 103 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. In addition to ref. (9), see ref. (17,20)W. R. Davis, L. H. Green andL. K. Norris:Comp. Math. Appl. 1, 361 (1975). andH. Takeno:Tensor N. S.,14, 103 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. C. Laczos:The Variational Principles of Mechanics (Toronto Ont., 1949), p. 144.

  21. Ref. (1,7).F. W. Hehl, G. D. Kerlick andP. von der Heyde:Phys. Lett.,63 B, 446 (1976).

    Article  ADS  Google Scholar 

  22. F. W. Hehl, G. D. Kerlick, E. A. Lord andL. L. Smalley:Hypermomentum and the microscopic violation of the Riemannian constraint in general relativity, University of Köln preprint (1977), p. 7.

  23. This procedure could be viewed as a type of «stability» examination of the LanczosV 4 variational identity.

  24. F. W. Hehl, G. D. Kerlich andP. von der Heyde:Phys. Rev. D,10, 1066 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  25. F. W. Hehl:Phys. Lett.,36 A, 225 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Mathisson:Acta. Phys. Polon.,6, 163 (1937).

    Google Scholar 

  27. A. Papapetrou:Proc. Roy. Soc.,209 A, 248 (1951);A. Papapetrou andE. Corinaldesi:Proc. Roy. Soc.,209 A, 259 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  28. S. W. Hawking andG. F. R. Ellis:The Large Scale Structure of Space-Time (Cambridge, 1973), sect.4 .1,4 .2.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, W.R., Atkins, W.K. & Baker, W.M. On the properties of torsions in Riemann-Cartan space-times. III: Classification of torsion and general discussion. Nuov Cim B 44, 23–38 (1978). https://doi.org/10.1007/BF02730330

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02730330

Navigation