Skip to main content
Log in

Sommerfeld poles and backward peaks in elastic scattering

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

In this paper we propose a new use of the complex-angular-momentum representation of the scattering amplitude. In particular we show that it is not possible to connect a sequence of compound-state resonances with a pole trajectory. Furthermore the high-energy backward peaks in the elastic channel are analysed, and we propose a model of the mechanism responsible for these backward enhancements. The mathematical formalism of this model, which employs the poles of theS-matrix in the complex-angular-momentum plane, is investigated in detail. Finally, in order to test the theory, a phenomenological analysis is performed; the results that we obtain are in agreement with the theory.

Riassunto

In questo lavoro si propone un nuovo uso della rappresentazione dell’ampiezza di diffusione nel piano del momento angolare complesso. Si dimostra in primo luogo che una traiettoria non può interpolare più risonanze nucleari, dovute alla formazione di nuclei composti nel senso di Bohr. Si studiano poi i picchi a grandi angoli nel canale elastico ad alta energia, e si propone un modello del meccanismo responsabile di questi picchi all’indietro. Si analizza in dettaglio il formalismo matematico di questo modello che usa i poli della matriceS nel piano del momento angolare complesso. Infine si sviluppa un’analisi fenomenologica i cui risultati sono in accordo con la teoria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Humblet andH. Rosenfeld:Nucl. Phys.,26, 529 (1961).

    Article  Google Scholar 

  2. S. C. Frautschi:Regge Poles and S-Matrix Theory (New York, N. Y., 1963).

  3. K. W. Mc Voy:Phys. Rev. C,3, 1104 (1971).

    Article  ADS  Google Scholar 

  4. R. C. Fuller:Nucl. Phys.,216 A, 199 (1973).

    Article  ADS  Google Scholar 

  5. R. C. Fuller andY. Avishai:Nucl. Phys.,222 A, 365 (1974).

    Article  ADS  Google Scholar 

  6. G. A. Viano:Suppl. Nuovo Cimento,6, 1277 (1968), see also the papers quoted therein.

    Google Scholar 

  7. R. Ceuleneer, M. Demeur andJ. Reignier:Nucl. Phys.,82, 625 (1966).

    Article  Google Scholar 

  8. R. Ceuleneer, M. Demeur andJ. Reignier:Nucl. Phys.,89, 177 (1966).

    Article  Google Scholar 

  9. S. Mukherjee andC. S. Shastri:Nucl. Phys.,128 A, 256 (1969).

    Article  ADS  Google Scholar 

  10. G. A. Viano:Lett. Nuovo Cimento,6, 257 (1973).

    Article  Google Scholar 

  11. G. A. Viano:Nuovo Cimento,22 A, 1 (1974).

    Article  ADS  Google Scholar 

  12. A. A. Cowley andG. Heynmann:Nucl. Phys.,146 A, 465 (1970).

    Article  ADS  Google Scholar 

  13. T. Tamura andH. H. Wolter:Phys. Rev. C,6, 1976 (1972).

    Article  ADS  Google Scholar 

  14. V. De Alfaro andT. Regge:Potential Scattering (Amsterdam, 1965).

  15. Many trajectories have been numerically computed for various classes of potentials ((15) chap. 12, (13)); unfortunately, these numerical investigations result to be not very useful and even misleading, since small changes in the potential can produce large variations in the analytical properties of the scattering amplitude (see sect.4).

  16. R. G. Newton:The Complex J-Plane (New York, N. Y., and Amsterdam, 1964).

  17. F. Ajzenberg-Selove andT. Lauritsen:Nucl. Phys.,11, 1 (1959).

    Article  Google Scholar 

  18. H. Bryant andN. Jarmie:Ann. of Phys.,47, 127 (1968).

    Article  ADS  Google Scholar 

  19. H. M. Nussenzveig:Journ. Math. Phys.,10, 82 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  20. H. M. Nussenzveig:Journ. Math. Phys.,10, 125 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  21. B. R. Levy andJ. B. Keller:Comm. Pure Appl. Math.,12, 159 (1959).

    Article  MathSciNet  Google Scholar 

  22. H. Oeschler, H. Schröter, H. Fuchs, L. Baum, G. Gaul, H. Ludecke, R. Santo andR. Stock:Phys. Rev. Lett.,28, 694 (1972).

    Article  ADS  Google Scholar 

  23. A. Sommerfeld:Partial Differential Equations in Physics (New York, N. Y., 1964).

  24. H. M. Nussenzveig:Ann. of Phys.,34, 23 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  25. R. G. Newton:Scattering Theory of Waves and Particles (New York, N. Y., 1966).

  26. A. Erdely, W. Magnus, F. Oberhettinger andF. G. Tricomi:Higher Transcendental Functions, Vol.1 (New York, N. Y., 1953), p. 143.

  27. M. Carrassi andG. Passatore:Nuovo Cimento,32, 1337 (1964).

    Article  MathSciNet  Google Scholar 

  28. M. Bertero, M. Carrassi, G. Passatore andG. A. Viano:Nuovo Cimento,36, 954 (1965).

    Article  Google Scholar 

  29. W. F. Baker, K. Berkelman, P. J. Carlson, G. P. Fisher, P. Fleury, D. Hartill, R. Kalbach, A. Lundby, S. Mukhin, R. Nierhaus, K. P. Pretzland andJ. Woulds:Nucl. Phys.,25 B, 385 (1971).

    Article  ADS  Google Scholar 

  30. J. Banaigs, J. Berger, C. Bonnel, J. Duflo, L. Goldzahl, F. Plouin, W. F. Baker, P. J. Carlson, V. Chabaud andA. Lundby:Nucl. Phys.,8 B, 31 (1968).

    Article  ADS  Google Scholar 

  31. W. F. Baker, P. J. Carlson, V. Chabaud, A. Lundby, J. Banaigs, J. Berger, C. Bonnel, J. Duflo, L. Goldzahl andF. Plouin:Nucl. Phys.,9 B, 249 (1969).

    Article  ADS  Google Scholar 

  32. J. Reignier:Nucl. Phys.,54, 225 (1964).

    Article  Google Scholar 

  33. P. G. Tomlinson, R. A. Sidwell, D. B. Lichtenberg, R. M. Heinz, R. Crittenden andE. Predazzi:Nucl. Phys.,25 B, 443 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Salvo, E., Viano, G.A. Sommerfeld poles and backward peaks in elastic scattering. Nuov Cim A 42, 49–66 (1977). https://doi.org/10.1007/BF02730307

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02730307

Navigation