Skip to main content

Parafermion representations of the lie-algebra chainO 7G 2SU 3

Парафермионные представления алгебры ЛиO 7G 2SU 3


The irreducible representations (IR) of theG 2 algebra contained in the parafermion IR ofO 7 are studied. Their reduction with respect to theSU 3 subalgebra and formulae for the explicit calculation of matrix elements are given.


Si studiano le rappresentazioni irriducibili dell’algebraG 2 contenute nelle rappresentazioni parafermioniche dell’algebraO 7 e la loro riduzione rispetto alla sottoalgebraSU 3. Si danno formule per il calcolo esplicito delle matrici di tali rappresentazioni.


Исследуются ненриводимые представления алгебрыG 2, содержашиеся в парафермионных неприводимых представлениях О,. Проводится редукция относительно субалгебрыSU 3 и предлагаются формулы для явного вычисления матричных злементов.

This is a preview of subscription content, access via your institution.


  1. (1)

    H. S. Green:Phys. Rev.,90, 270 (1953).

    Article  ADS  MATH  Google Scholar 

  2. (2)

    C. Ryan andE. C. G. Sudarshan:Nucl. Phys.,47, 207 (1963).

    MathSciNet  Article  Google Scholar 

  3. (3)

    M. Günaydin andF. Gürsey:Phys. Rev. D,9, 3387 (1974);F. Gürsey:Kyoto Symposium on Mathematical Problems in Theoretical Physics, edited byH. Araki (Berlin, 1975);F. Gürsey andP. Sikivie:Phys. Rev. Lett.,36, 775 (1976);P. Ramond:Nucl. Phys.,126 B, 509 (1977).

    Article  ADS  Google Scholar 

  4. (4)

    N. Jacobson:Exceptional Lie Algebras (New York, N. Y., 1971);M. Günaydin andF. Gürsey:Journ. Math. Phys.,14, 1651 (1973);P. Ramond:Nucl. Phys.,110 B, 214 (1976).

  5. (5)

    G. Racah:Group Theory and Spectroscopy (Princeton, N. J., 1951).

  6. (6)

    O. W. Greenberg andA. M. L. Messiah:Phys. Rev.,138, B 1155 (1965).

    Google Scholar 

  7. (7)

    Y. Ohnuki andS. Kamefuchi:Ann. of Phys.,51, 337 (1969).

    Article  ADS  Google Scholar 

  8. (8)

    J. G. Nagel andM. Moshinski:Journ. Math. Phys.,6, 627 (1965);F. Duimio:Nuovo Cimento,55 A, 750 (1968).

    Article  Google Scholar 

  9. (9)

    I. M. Gel’fand andM. L. Zetlin:Dokl. Akad. Nauk USSR,71, 825 (1950);G. E. Baird andL. C. Biedenharn:Journ. Math. Phys.,4, 1128 (1963).

    MATH  Google Scholar 

  10. (10)

    I. M. Gel’fand, R. A. Minlos andZ. Ya. Shapiro:Representations of the Rotation and Lorentz Groups and Their Applications, Suppl. 1 (London, 1963).

  11. (11)

    R. E. Behrends, J. Dreitlin, C. Fronsdal andW. Lee:Rev. Mod. Phys.,34, 1 (1962).

    Article  ADS  MATH  Google Scholar 

  12. (12)

    A very interesting approach to the representation theory of the chainG 2SU 3 has recently been proposed byM. Perroud:Journ. Math. Phys.,17, 1998 (1976).

    MathSciNet  Article  ADS  MATH  Google Scholar 

  13. (13)

    A. B. Govorkov:Ann. of Phys.,53, 349 (1969);Int. Journ. Theor. Phys.,7, 49 (1973);A. J. Bracken andH. S. Green:Journ. Math. Phys.,14, 1784 (1973);T. Palev:Ann. Inst. Poincaré,23 A, 49 (1975).

    Article  ADS  MATH  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duimio, F., Zecchi, E. Parafermion representations of the lie-algebra chainO 7G 2SU 3 . Nuov Cim A 45, 315–324 (1978).

Download citation