Skip to main content

Parafermion representations of the lie-algebra chainO 7G 2SU 3

Парафермионные представления алгебры ЛиO 7G 2SU 3

Summary

The irreducible representations (IR) of theG 2 algebra contained in the parafermion IR ofO 7 are studied. Their reduction with respect to theSU 3 subalgebra and formulae for the explicit calculation of matrix elements are given.

Riassunto

Si studiano le rappresentazioni irriducibili dell’algebraG 2 contenute nelle rappresentazioni parafermioniche dell’algebraO 7 e la loro riduzione rispetto alla sottoalgebraSU 3. Si danno formule per il calcolo esplicito delle matrici di tali rappresentazioni.

Реэюме

Исследуются ненриводимые представления алгебрыG 2, содержашиеся в парафермионных неприводимых представлениях О,. Проводится редукция относительно субалгебрыSU 3 и предлагаются формулы для явного вычисления матричных злементов.

This is a preview of subscription content, access via your institution.

References

  1. (1)

    H. S. Green:Phys. Rev.,90, 270 (1953).

    Article  ADS  MATH  Google Scholar 

  2. (2)

    C. Ryan andE. C. G. Sudarshan:Nucl. Phys.,47, 207 (1963).

    MathSciNet  Article  Google Scholar 

  3. (3)

    M. Günaydin andF. Gürsey:Phys. Rev. D,9, 3387 (1974);F. Gürsey:Kyoto Symposium on Mathematical Problems in Theoretical Physics, edited byH. Araki (Berlin, 1975);F. Gürsey andP. Sikivie:Phys. Rev. Lett.,36, 775 (1976);P. Ramond:Nucl. Phys.,126 B, 509 (1977).

    Article  ADS  Google Scholar 

  4. (4)

    N. Jacobson:Exceptional Lie Algebras (New York, N. Y., 1971);M. Günaydin andF. Gürsey:Journ. Math. Phys.,14, 1651 (1973);P. Ramond:Nucl. Phys.,110 B, 214 (1976).

  5. (5)

    G. Racah:Group Theory and Spectroscopy (Princeton, N. J., 1951).

  6. (6)

    O. W. Greenberg andA. M. L. Messiah:Phys. Rev.,138, B 1155 (1965).

    Google Scholar 

  7. (7)

    Y. Ohnuki andS. Kamefuchi:Ann. of Phys.,51, 337 (1969).

    Article  ADS  Google Scholar 

  8. (8)

    J. G. Nagel andM. Moshinski:Journ. Math. Phys.,6, 627 (1965);F. Duimio:Nuovo Cimento,55 A, 750 (1968).

    Article  Google Scholar 

  9. (9)

    I. M. Gel’fand andM. L. Zetlin:Dokl. Akad. Nauk USSR,71, 825 (1950);G. E. Baird andL. C. Biedenharn:Journ. Math. Phys.,4, 1128 (1963).

    MATH  Google Scholar 

  10. (10)

    I. M. Gel’fand, R. A. Minlos andZ. Ya. Shapiro:Representations of the Rotation and Lorentz Groups and Their Applications, Suppl. 1 (London, 1963).

  11. (11)

    R. E. Behrends, J. Dreitlin, C. Fronsdal andW. Lee:Rev. Mod. Phys.,34, 1 (1962).

    Article  ADS  MATH  Google Scholar 

  12. (12)

    A very interesting approach to the representation theory of the chainG 2SU 3 has recently been proposed byM. Perroud:Journ. Math. Phys.,17, 1998 (1976).

    MathSciNet  Article  ADS  MATH  Google Scholar 

  13. (13)

    A. B. Govorkov:Ann. of Phys.,53, 349 (1969);Int. Journ. Theor. Phys.,7, 49 (1973);A. J. Bracken andH. S. Green:Journ. Math. Phys.,14, 1784 (1973);T. Palev:Ann. Inst. Poincaré,23 A, 49 (1975).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duimio, F., Zecchi, E. Parafermion representations of the lie-algebra chainO 7G 2SU 3 . Nuov Cim A 45, 315–324 (1978). https://doi.org/10.1007/BF02730073

Download citation