Skip to main content
Log in

Structure functions in deep inelastic scattering and in deep inelastic annihilation

Структурные функции в глубоко неупругом рассеянии и в глубоко неупругой аннигиляции

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

Structure functions in ep → e + X are directly obtained by using Wilson’s short-distance expansion and the conformal covariant light-cone expansion. It is shown that Bjorken scaling is broken in general due to the existence of anomalous dimensions in the expansions. It is also shown that the Drell-Yan-West relation does not hold because of the anomalous dimension. The method is applied to e+e → h + X and the one-particle distribution is calculated to give \(s(d\sigma /d\omega )\xrightarrow[{\omega \to 1}]{}(1 - \omega )^{2l_{\pi - 3} } \), wherel π is the dimension of the pion field.l π is determined to bel π=2.5 from the experimental data of e+e → π + X.

Riassunto

Si ottengono direttamente funzioni di struttura in ep → e + X usando lo sviluppo di breve distanza di Wilson e lo sviluppo del cono di luce covariante conforme. Si mostra che la variazione di scala di Bjorken si infrange generalmente a causa dell’esistenza di dimensioni anomale negli sviluppi. Si mostra anche che la relazione di Drell-Yan-West non vale a causa della dimensione anomala. Si applica il metodo a e+e → h + X e si calcola la distribuzione di una particella per avere \(s(d\sigma /d\omega )\xrightarrow[{\omega \to 1}]{}(1 - \omega )^{2l_{\pi - 3} } \) dovel π è la dimensione del campo pionico.l π è determinato esserel π=2.5 dai dati sperimentali di e+e → π + X.

Реэюме

Испольэуя раэложение Вильсона на малых расстояниях и конформное ковариантное раэложение на световом конусе, непосредственно получаются струк-турные функции в ep → e+X. Покаэывается, что подобие Бьёркена нарущается вследствие сушествования аномального числа иэмерений в раэложениях. Также отмечается, что соотнощение Дрелла-Яна-Веста несправедливо иэ-эа аномального числа иэмерений. Предложенный метод применяется к процессу e+e→h+Х. Вычисление одночастичного распределения дает \(s(d\sigma /d\omega )\xrightarrow[{\omega \to 1}]{}(1 - \omega )^{2l_{\pi - 3} } \), гдеl π есть число иэмерений пионного поля. Определяется величинаl π, равнаяl π=2.5, исходя иэ зкспериментальных данных для реакции e+e→π+X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Literatur

  1. For a recent review of lepton-hadron scattering, seeF. J. Gilman:Proceedings of the XVII International Conference on High-Energy Physics (London, 1974), p. IV-149.

  2. S. D. Drell andT. M. Yan:Phys. Rev. Lett.,24, 181 (1970);G. B. West:Phys. Rev. Lett.,24, 1206 (1970).

    Article  ADS  Google Scholar 

  3. For a review of this expansion, seeS. Ferrara, R. Gatto andA. Grillo:Springer Tracts in Modern Physics, Vol.67 (Berlin, 1973);S. Ferrara, R. Gatto, A. Grillo andG. Parisi:Scale and Conformal Symmetry in Hadron Physics, edited byR. Gatto (New York, N. Y., 1973). In the above articles the conformal covariant light-cone expansion is formulated purely in an algebraic method which is independent of the special models of the Lagrangian field theory. However it is well known that, when the Lagrangian is scale invariant, it is also conformal invariant if there are no derivative couplings.

  4. K. Bitar:Phys. Rev. D,6, 2250 (1972).

    Article  ADS  Google Scholar 

  5. R. J. Crewther:Phys. Rev. Lett.,28, 1421 (1972).

    Article  ADS  Google Scholar 

  6. G. Parisi:Nucl. Phys.,59 B, 641 (1973).

    Article  ADS  Google Scholar 

  7. O. Nachtman:Nucl. Phys.,63 B, 237 (1973).

    Article  ADS  Google Scholar 

  8. N. Christ, B. Hasslacher andA. H. Mueller:Phys. Rev. D,6, 3543 (1972). In the case of the 4 theory we haveγ m =(3g 2/32(2π)4) (1/6 - 1/m(m + 1)), seeP. Menotti:Phys. Rev. D,8, 2496 (1973). In the representation of the anomalous dimensions here, we makeγ m become zero form=2. SeeG. Parisi:Phys. Lett.,43 B, 207 (1973);W. K. Tung:Phys. Rev. Lett.,35, 490 (1975), and Chicago preprint EFI 75/36 (1975). The author would like to thankG. Parisi for discussions on these points.

    Article  ADS  Google Scholar 

  9. C. Chang, K. W. Chen, D. J. Fox, A. Kotlewski, P. F. Kung, L. N. Hand, S. Herb, A. Russell, Y. Watanabe, S. C. Loken, M. Strovink andW. Vernon:Phys. Rev. Lett.,35, 901 (1975).

    Article  ADS  Google Scholar 

  10. A. A. Migdal:Phys. Lett.,37 B, 98 (1971);S. Ferrara, A. Grillo andG. Parisi:Nuovo Cimento,12 A, 952 (1972);P. Menotti:Phys. Rev. D,9, 2767 (1974);Phys. Lett.,56 B, 169 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  11. R. E. Taylor: SLAC preprint SLAC-PUB-1613 (1975); talk given at 1975 Energies, SLAC (August, 1975). In the above articles it has been confirmed that the electromagnetic form factor is well fitted by the dipole and further shown that, if the variableω s =ω+1.5/(−q 2) is chosen, the exponent ofω s − 1 becomes 4.

  12. S. D. Drell, D. J. Levy andT. M. Yan: Phys. Rev.,187, 2159 (1969);Phys. Rev. D,1, 1617 (1970).

    Article  ADS  Google Scholar 

  13. The pion field is an interpolating field in this case, then it only makes sense to speak of the minimal dimension. See alsoR. Brandt andNg Wig-Chiu:Phys. Rev. D,10, 1918 (1974).

    Article  ADS  Google Scholar 

  14. M. Gell-Mann, R. J. Oakes andB. Renner:Phys. Rev.,175, 2195 (1968);M. Gell-Mann:Proceedings Third Hawaii Topical Conference on Particle Physics, edited byS. F. Tuan (North Hollywood, Cal., 1969);K. Wilson:Phys. Rev.,179, 1499 (1969).

    Article  ADS  Google Scholar 

  15. Y. Chikashige andH. Inagaki:Phys. Lett.,40 B, 117 (1972);V. M. Raval andR. Ramachandran:Phys. Lett.,46 B, 91 (1973).

    Article  ADS  Google Scholar 

  16. G. Hanson, G. S. Abrams, A. M. Boyarski, M. Breidenbach, F. Bulos, W. Chinowsky, G. J. Feldman, C. E. Friedberg, D. Fryberger, G. Goldhaber, D. L. Hartill, B. Jean-Marie, J. A. Kadyk, R. R. Larsen, A. M. Litke, D. Lüke, B. A. Lulu, V. Lüth, H. L. Lynch, C. C. Morehouse, B. Richter, B. Sadoulet, R. F. Schwitters, W. Tanenbaum, G. H. Trilling, F. Vannucci, J. S. Whitaker, F. C. Winkelmann andJ. E. Wiss:Phys. Rev. Lett.,35, 1609 (1975).

    Article  ADS  Google Scholar 

  17. See ref. (12) and see alsoN. Cabibbo, G. Parisi andM. Testa:Lett. Nuovo Cimento,4, 35 (1970);J. D. Bjorken andB. J. Brodsky:Phys. Rev. D,1, 1416 (1970).

    Article  ADS  Google Scholar 

  18. B. Richter:Proceedings of the XVII International Conference on High-Energy Physics (London, 1974).

  19. H. Inagaki: Ph. D. Thesis (unpublished); see alsoG. R. Farrar andD. R. Jackson:Phys. Rev. Lett.,35, 1416 (1975).

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Work partly supported by the INFN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inagaki, H. Structure functions in deep inelastic scattering and in deep inelastic annihilation. Nuov Cim A 33, 555–567 (1976). https://doi.org/10.1007/BF02729871

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729871

Navigation