Skip to main content
Log in

Relativistic two-body interactions: a Hamiltonian formulation

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

An explicit construction is given of some classes of Hamiltonians invariant under the Poincaré group and describing the evolution of relativistic dynamical systems composed of a single free point, of a point in external fields or of two interacting points. The no-interaction theorem is circumvented by making a clear distinction between evolution parameter and time co-ordinates of each point. The way to introduce the interaction potentials is suggested by the forms of the Hamiltonians of a single point in the different external fields. The possibility of completely using the symplectic structure of the Hamiltonian mechanics allows a classification of the interactions according to which characteristics of the Poincaré groups associated to each particle are conserved by the interaction itself. Various models are thus obtained including, as particular cases, interesting results as the «relativistic rigid rotator» and some generalizations of the classical mechanics with a correct Galileian limit. The equations of motion are analysed in the light of some requirements of physical coherence. Finally the quantization of the most meaningful models is discussed.

Riassunto

Si costruiscono esplicitamente alcune classi di hamiltoniane invarianti di Poincaré che descrivono l'evoluzione di sistemi dinamici relativistici composti da un solo punto sia libero che in campi esterni oppure da due punti interagenti. Il teorema di non interazione è evitato distinguendo accuratamente tra parametro di evoluzione e coordinate temporali dei punti. Il modo di introdurre i potenziali di interazione tra i due punti è suggerito dalla forma delle hamiltoniane di un singolo punto nei diversi campi esterni. La possibilità di usare pienamente la struttura simplettica della meccanica hamiltoniana permette di classificare le interazioni a seconda delle caratteristiche dei gruppi di Poincaré associati ad ogni particella che sono conservate dall'interazione stessa. Si ottengono così vari modelli che contemplano, come casi particolari, risultati interessanti quali il «rotatore rigido relativistico» ed alcune generalizzazioni della meccanica classica con un corretto limite galileiano. Le equazioni del moto sono analizzate alla luce di alcune richieste di coerenza fisica. Si discute infine la quantizzazione dei modelli più significativi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Giachetti andE. Sorace:Nuovo Cimento A,43, 281 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  2. D. G. Currie, T. F. Jordan andE. C. G. Sudarshan:Rev. Mod. Phys.,38, 350 (1963);H. Leutweyler:Nuovo Cimento,37, 556 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  3. A. F. Kracklauer:J. Math. Phys. (N. Y.),17, 693 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Orenstein andK. Rafanelli:Lett. Nuovo Cimento,23, 93 (1978).

    Article  Google Scholar 

  5. A Barducci, L. Lusanna andE. Sorace:Nuovo Cimento B,46, 287 (1978), and references quoted therein. For different approaches see alsoF. Rohrlich:Ann. Phys. (N. Y.),117, 292 (1979);K. Rafanelli andS. Orenstein:An extended particle with interacting constituents.—II: Hamiltonian formulation, preprint, New York, N. Y. (1979);K. Rafanelli andS. Orenstein:Nuovo Cimento A,48, 227 (1978);Ph. Droz-Vincent:Hamiltonian construction of predictive systems, inDifferential Geometry and Relativity, edited byM. Cahen andM. Flato (Dordrecht, 1976).

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Pauri andG. M. Prosperi:J. Math. Phys. (N. Y.),7, 336 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  7. E. C. G. Sudarshan andN. Mukunda:Classical Dynamics: a Moden Perspective (New York, N. Y., 1974).

  8. R. Giachetti andE. Sorace:Nuovo Cimento B,45, 130 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. M. Souriau:Structure des systèmes dynamiques (Paris, 1970).

  10. This reduction method can be applied in the same way to any set of canonical variables, as the «global and relative» ones defined in sect.5.

  11. F. Gantmacher:Lectures in Analytical Mechanics (Moscow, 1970).

  12. We use the metricg μν=diag (+1, −1, −1, −1) and we adopt the convention of summing over repeated tensor indices.

  13. D. Dominici, J. Gomis andG. Longhi:Nuovo Cimento B,48, 152 (1978).

    Article  ADS  Google Scholar 

  14. For instance, this happens whenever the canonical equations imply two or more identities involving the velocities. A typical case is (q i)2)=1,i=1,n.

  15. R. D. Driver:Ordinary and Delay Differential Equations (New York, N. Y., 1977).

  16. M. Le Bellac andL. M. Lévy Leblond:Nuovo Cimento B,14, 217 (1973).

    Article  ADS  Google Scholar 

  17. R. Giachetti andE. Sorace:Lett. Nuovo Cimento,26, 1 (1979).

    Article  Google Scholar 

  18. The above discussion closely parallels results so far obtained within the framework of general relativity. See, for instance,L. Landau andE. Lifchitz:Théorie des champs, sect.84 (Moscou, 1970);C. Cattaneo:Nuovo Cimento,10, 318 (1958);R. Goldoni:Gen. Rel. Grav.,6, 103 (1975).

  19. D. Dominici, J. Gomis andG. Longhi:Nuovo Cimento A,48, 257 (1978).

    Article  ADS  Google Scholar 

  20. G. E. Chilov:Analyse mathématique. Functions de plusieures variables réelles (Moscou, 1975).

  21. Pham Mau Quan:Introduction à la géométrie des variétés différentiables (Paris, 1969).

  22. The factor in front ofV may be substituted by any other symmetric expression inp and π whose classical limit is twice the reduced mass.

  23. E. C. Zeeman:J. Math. Phys. (N. Y.),5, 490 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. To realize the mathematical problems connected with the existence of relativistic wave operators, seeL. P. Horwitz andA. Soffer:On the existence of the wave operators in relativistic quantum scattering theory, preprint, Tel Aviv, TAUP 735-79.

  25. We use units with ħ=1.

  26. K. B. Wolf:The Heisenberg-Weyl ring in quantum mechanics, inGroup Theory and Its Applications, edited byE. Loebl (New York, N. Y., 1975);L. Castellani, D. Dominici andG. Longhi:Nuovo Cimento A,48, 91 (1978).

  27. It is remarkable that eqs. (11.13) are very close to those obtained in ref. (19). by means of a singular Lagrangian approach: the difference arises from the factor we introduced in (9.11) just to recover the correct Galileian limit. If this factor is set equal to unity, then the first of (11.13) is identical to (5.2) of ref. (19),D. Dominici, J. Gomis andG. Longhi:Nuovo Cimento A,48, 257 (1978).

    Article  ADS  Google Scholar 

  28. Y. S. Kim andM. E. Noz:Phys. Rev. D,8, 3521 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Haken:Synergetics (Berlin, 1977).

  30. P. Gerber:Z. Math. Phys.,43, 93 (1898). We found the quotation of this paper inE. Mach:Die Mechanik in ihrer Entwicklung historisch-kritisch dargestellt (Leipzig, 1901).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giachetti, R., Sorace, E. Relativistic two-body interactions: a Hamiltonian formulation. Nuov Cim B 56, 263–301 (1980). https://doi.org/10.1007/BF02729264

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729264

Navigation