Skip to main content
Log in

The cosmological constant (Λ) as a possible primordial link to Einstein’s theory of gravity, the properties of hadronic matter and the problem of creation

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Einstein’s field equations with a cosmological constant (Λ) are explored in an isotropic, homogeneous, expanding universe which satisfies the principle of absolute quark confinement. What emerges from these requirements are new cosmologies free from singularities in physical quantities and with time-varying gravitational (G) and cosmological (Λ) parameters. For the caseG=const and Λ=Λ(t), it is suggested that hadronic matter was created in the early universe as a localized, quantum fluctuation of the vacuum, because |Λ| had an initial value ≈10−10/cm2. The localized fluctuation persisted and evolved into the universe visible today, because |Λ| decreased rapidly with cosmic time. In this sense, «creation» (i.e. «the beginning»)—a manifestly energy-nonconserving event—was linked to a time-varying Λ. which, in turn, was linked to the principle of absolute quark confinement. For the case Λ=Λ(t) andG=G(t), withG, |Λ| larger in the past, the maximum values ofG, |Λ| compatible with absolute quark confinement are those required by the principle of maximum strength,i.e. G max≈1040 G (whereG=6.67·10−8 dyn cm2/g2) and ¦Λ¦max≈1030/cm2. In spite of the wide variations in the numerical values ofG, |Λ| for both cases, the new cosmologies give the same numerical values for the physical characteristics of the early universe,i.e. maximum hadronic mass density ≈1017 g/cm3, minimum radius ≈1013 cm, maximum temperature ≈1012 K (the limiting temperature for hadronic matter, first noticed by Hagedorn). This circumstance exists because the physical numbers depend only on the ratio |Λ|/G evaluated at cosmic timet=τ (where τ is defined as the «moment of creation»).

Riassunto

Si studiano equazioni di campo di Einstein con una costante cosmologica (Λ) in un universo isotropico, omogeneo ed in espansione che soddisfa il principio di confinamento assoluto dei quark. Ciò che emerge da questi requisiti sono nuovo cosmologie prive di singolarità in quantità fisiche e con parametri gravitazionale (G) e cosmologico (Λ) che variano nel tempo. Per il casoG=const e Λ=Λ(t) si suggerisce che la materia adronica fu creata nell’universo primitivo come una fluttuazione quantistica localizzata, perché |Λ| aveva un valore iniziale ≈10−10/cm2. La fluttuazione localizzata ha perdurato e si è evoluta nell’universo visibile oggi, poiché |Λ| è diminuito rapidamente col tempo cosmico. In questo senso, la «creazione» (cioè «l’inizio»)—un evento che manifestamente non conserva l’energia—era vincolata a un Λ che varia nel tempo, che per contro era legato al principio di confinamento assoluto dei quark. Per il caso Λ=Λ(t) eG=G(t) conG, |Λ| più grandi nel passato, i valori massimi diG, |Λ| compatibili con il confinamento assoluto dei quark sono quelli richiesti dal principio di massima forza: cioèG max≈1040 G (doveG=6.67·10−8 dyn cm2/g2) e ¦Λ¦max≈1030/cm2. Nonostante le ampie variazioni nei valori numerici diG e |Λ| per entrambi i casi, le nuove cosmologie danno gli stessi valori numerici per le caratteristiche fisiche dell’universo primitivo, cioè densità di massa adronica massima ≈1017 g/cm3, raggio minimo ≈1013 cm, temperatura massima ≈1012 K (la temperatura limite per la materia adronica, notata per la prima volta da Hagedorn). Questa circostanza si verifica perchè i numeri fisici dipendono solo dal rapporto |Λ|/G valutato al tempo cosmicot=τ (dove τ è definito come «l’attimo della creazione»).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. DerSarkissian:Lett. Nuovo Cimento,35, 285 (1982), and references therein.

    Article  ADS  Google Scholar 

  2. M. DerSarkissian:Lett. Nuovo Cimento,36, 261 (1983), and references therein.

    Article  ADS  MATH  Google Scholar 

  3. a) M. DerSarkissian:Phys. Lett. B,55, 84 (1975);b) M. DerSarkissian:Nuovo Cimento B,34, 245 (1976).

    Article  ADS  Google Scholar 

  4. G. F. Chew:Found. Phys.,13, 217 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  5. F. Capra:Bootstrap Theory of Particles; LBL-14858 (preprint: 8/82).

  6. For a detailed presentation of Einstein’s theory of gravity and the standard cosmological model, seeS. Weinberg:Gravitation and Cosmology (John Wiley and Sons, New York, N. Y., 1972).

    Google Scholar 

  7. Les Houches Lectures (1979: Session XXXII):Physical Cosmology, edited byR. Balian, J. Audouze andD. Schramm (North-Holland, Amsterdam, 1980), p. 117.

    Google Scholar 

  8. P. A. M. Dirac:The variation of G and the problem of the moon, inRecent Developments in High Energy Physics (Orbis Scientiae), edited byB. Kursunoglu (Plenum Press, New York, N. Y., 1980), p. 1. For a review of the Dirac model with citation of the original articles byDirac seeJ. V. Narlikar:Found. Phys.,13, 311 (1983).

    Chapter  Google Scholar 

  9. A. Linde:Lett. Nuovo Cimento,39, 401 (1984). An appropriate variation on Linde’s model for quantum creation of the inflationary universe appears to solve the horizon problem for the new cosmological models presented in this paper.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DerSarkissian, M. The cosmological constant (Λ) as a possible primordial link to Einstein’s theory of gravity, the properties of hadronic matter and the problem of creation. Nuov Cim B 88, 29–42 (1985). https://doi.org/10.1007/BF02729027

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729027

Keywords

Navigation