Skip to main content
Log in

Weylian geometry and first-order wave equations

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

If one tries to build axiomatically the Einsteinian theory of gravitation by means of the basic concepts «event, light ray and freely falling particle», one arrives at a Weyl and not at a Riemann spacetime. However, Audretsch has recently proved the following remarkable theorem: if one assumes that the motion of the particle is governed by Dirac, or Klein-Gordon, wave equation, the above Weyl space-time degenerates into a Riemann space-time. In this paper, we give a synthetic—and more general—proof of Audretsch’s result.

Riassunto

Se si cerca di costruire assiomaticamente la teoria gravitazionale di Einstein per mezzo dei concetti fondamentali «evento, raggio luminoso e particella in caduta libera», si perviene ad uno spazio-tempo di Weyl anziché ad uno spazio-tempo di Riemann. Audretsch ha però dimostrato recentemente questo notevole teorema: se si suppone —com’è del tutto ragionevole—che, in un quadro piú raffinato, il moto della particella obbedisca all’equazione di Dirac, o di Klein-Gordon, il suddetto spazio-tempo di Weyl si riduce ad uno spazio-tempo di Riemann. Nel presente lavoro si dà una dimostrazione sintetica, e piú generale, del risultato di Audretsch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. a)H. Weyl:Space-Time-Matter, translation of the fourth edition (1922) ofRaum-Zeit-Materie (New York, N. Y., 1950), p. 313;b)H. Weyl:Mathematische Analyse des Raumproblems (1923), p. 18, in the miscellaneous volumeDas Kontinuum und andere Monographien (New York, N. Y., without indication of the year); I have a good mind to do, in a next future, a translation with comments of these splendid lectures on the space problem;c)H. Weyl:Naturwissenschaften,19, 49 (1931). (1bis) See the monograph (1b), p. 19.

  2. Weylian geometry is expounded in a synthetically elegant way inSpace-Time-Matter (1a), Chapt. II, Sect.16, and in the works quoted in (1b,c). For more analytic treatment, seeL. P. Eisenhart:Non-Riemannian Geometry (New York, N. Y., 1927),passim;A. S. Eddington:The Mathematical Theory of Relativity (Cambridge, 1960), Chapt. VII;P. G. Bergmann:Introduction to the Theory of Relativity (Englewood Cliffs, N. J., 1960), Chapt. XVI, Cf. alsoP. A. M. Dirac:Proc. R. Soc. London, Ser. A,333, 403 (1973). (2bis) In thespecial theory of relativity, things are much simpler. The Minkowskian geometry (as the Euclidean geometry) of the entire space can be built on the sole concept of zero-element [(dx 0)2−(dx 1)2−(dx 2)2−(dx 3)2=0; in Euclidean geometry, the absolute or isotropic directions],i.e. on the sole conformal structure. The projective structure,i.e. the concept of straight line, is superfluous! This is due to the circumstance that, in a geometric formulationnot restricted to a finite portion of space, the only conformal transformations that change proper points into proper points are thesimilarity transformations, the group of which characterizes completely the Minkowskian (or Euclidean) geometry. Cf. the monograph (1b), p. 8, andA. A. Robb:A Theory of Time and Space (Cambridge, 1914). An attempt to extend the above point of view to the infinitesimal geometry was made byEinstein andWirtinger, seeA. Einstein:Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl., 261 (1921). See furtherR. Bach:Math. Z.,9, 110 (1921);C. Lanczos:Ann. Math.,39, 842 (1938).

  3. J. Audretsch:Phys. Rev. D,27, 2872 (1983). Audretsch’s notations are different from those of the present paper.

    Article  MathSciNet  ADS  Google Scholar 

  4. We prefer the term «calibration» (cf. (1a)), in the place of the generic «gauge», which has lost any connection with the changes of the standards of length.

  5. W. Pauli:Helv. Phys. Acta,13, 204 (1940).

    MathSciNet  Google Scholar 

  6. Cf.M. Brignoli andA. Loinger:Nuovo Cimento A,80, 477 (1984), and the literature quoted there.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. H. Boerner:Representations of Groups etc. (Amsterdam, 1963), p. 296.

  8. W. Heisenberg:Die physikalischen Prinzipien der Quantentheorie (Leipzig, 1930)passim and Sect.8 of the Appendix. See also Weyl’s paper cited in (1c).

  9. P. A. M. Dirac:Lectures on Quantum Mechanics (New York, N. Y., 1964), p. 12.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loinger, A. Weylian geometry and first-order wave equations. Nuov Cim B 88, 9–19 (1985). https://doi.org/10.1007/BF02729025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729025

Keywords

Navigation