Skip to main content
Log in

Jacobian-free newton-krylov methods for the accurate time integration of stiff wave systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Stiff wave systems are systems which exhibit a slow dynamical time scale while possessing fast wave phenomena. The physical effects of this fast wave may be important to the system, but resolving the fast time scale may not be required. When simulating such phenomena one would like to use time steps on the order of the dynamical scale for time integration. Historically, Semi-Implicit (SI) methods have been developed to step over the stiff wave time scale in a stable fashion. However, SI methods require some linearization and time splitting, and both of these can produce additional time integration errors. In this paper, the concept of using SI methods as preconditioners to Jacobian-Free Newton-Krylov (JFNK) methods is developed. This algorithmic approach results in an implicitly balanced method (no linearization or time splitting). In this paper, we provide an overview of SI methods in a variety of applications, and a brief background on JFNK methods. We will present details of our new algorithmic approach. Finally, we provide an overview of results coming from problems in geophysical fluid dynamics (GFD) and magnetohydrodynamics (MHD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biskamp, D. (1993).Nonlinear Magnetohydrodynamics. Cambridge University Press, Cambridge.

    Google Scholar 

  2. Biskamp, D. (2000).Magnetic Reconnection in Plasmas. Cambridge University Press, Cambridge.

    Google Scholar 

  3. Brackbill, J. U., and Pracht, W. E. (1973). An implicit, almost-Lagrangian algorithm for magnetohydrodynamics.J. Comput. Phys. 13, 455–482.

    Article  Google Scholar 

  4. Brown, P. N., and Saad, Y. (1990). Hybrid Krylov methods for nonlinear systems of equations.SIAM J. Sci. Stat. Comput. 11, 450–481.

    Article  MATH  MathSciNet  Google Scholar 

  5. Caramana, E. J. (1991). Derivation of implicit difference schemes by the method of differential approximations.J. Comput. Phys. 96, 484–493.

    Article  MATH  Google Scholar 

  6. Chacón, L. and Knoll, D. A. (2003). A 2D high-β Hall MHD implicit nonlinear solver.J. Comput. Phys. 188, 573–592.

    Article  MATH  Google Scholar 

  7. Chacón, L., Knoll, D. A., and Finn, J. M. (2002). An implicit nonlinear reduced resistive MHD solver.J. Comput. Phys. 178, 15–36.

    Article  MATH  Google Scholar 

  8. Chacón, L., Knoll, D. A., and Finn, J. M. (2003). Hall MHD effects in the 2-D Kelvin-Helmholtz/tearing instability.Phys. Lett. A,308, 187–197.

    Article  MATH  Google Scholar 

  9. Chan, T. F., and Jackson, K. R. (1984). Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms.SIAM J. Sci. Stat. Comput. 5:533–542.

    Article  MATH  MathSciNet  Google Scholar 

  10. Dawson, C.N., Klie, H., Wheeler, M.F., and Woodward, C.S. (1997). A parallel, implicit, cell centered method for two-phase flow with a preconditioned Newton-Krylov solver.Comp. Geosciences,1, 215–249.

    Article  MATH  MathSciNet  Google Scholar 

  11. Dembo, R. et al. (1982). Inexact Newton methods.SIAM J. Numer. Anal. 19, 400–408.

    Article  MATH  MathSciNet  Google Scholar 

  12. Eisenstat, S. C., and Walker, H. F. (1996). Choosing the forcing terms in an inexact Newton methods.SIAM J. Sci. Comput. 17, 16–32.

    Article  MATH  MathSciNet  Google Scholar 

  13. Harlow, F. H., and Amsden, A. A. (1971). A numerical fluid dynamical calculation method for all flow speeds.J. Comput. Phys. 8, 197–214.

    Article  MATH  Google Scholar 

  14. Harned, D. S., and Kerner, W. (1985). Semi-implicit method for three-dimensional compressible magnetohydrodynamic simulation.J. Comput. Phys. 60, 62–75.

    Article  MATH  Google Scholar 

  15. Harned, D. S. and Mikic, Z. (1989). Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamics.J. Comput. Phys. 83, 1–15.

    Article  MATH  Google Scholar 

  16. Holton, J. R. (1979).An Introduction to Dynamic Meteorology, Academic Press, Orlando.

    Google Scholar 

  17. Jackson, J. D. (1975).Classical Electrodynamics, Second Edition, Wiley, New York.

    Google Scholar 

  18. Kelley, C. T. (1995).Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia.

    MATH  Google Scholar 

  19. Kerkhoven, T., and Saad, Y. (1992). On acceleration methods for coupled nonlinear elliptic systems.Numer. Math. 60, 525–548.

    Article  MATH  MathSciNet  Google Scholar 

  20. Knoll, D. A., and Chacón, L. (2002). Magnetic reconnection in the two-dimensional Kelvin-Helmholtz instability.Phys. Rev. Lett. 88, (215003).

  21. Knoll, D. A., Chacón, L., Margolin, L. G. and Mousseau, V. A. (2003). On balanced approximations for the time integration of multiple time scale systems.J. Comput. Phys. 185, 583–611.

    Article  MATH  Google Scholar 

  22. Knoll, D. A., and Keyes, D. E. (2003). Jacobian-Free Newton-Krylov methods: A survey of approaches and applications.J. Comput. Phys. 193, 357–397.

    Article  MathSciNet  Google Scholar 

  23. Knoll, D. A., VanderHeyden, W. B., Mousseau, V. A., and Kothe, D. B. (2002). On preconditioning Newton-Krylov methods in solidifying flow applications.SIAM J. Sci. Comput. 23, 381–397.

    Article  MathSciNet  Google Scholar 

  24. Kwizak, M., and Robert, A. J. (1971). Semi-implicit scheme for grid point atmospheric models of the primative equations.Mon. Wea. Rev. 99, 32–36.

    Article  Google Scholar 

  25. Mousseau, V. A., Knoll, D. A. and Rider, W. J. (2000). Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion.J. Comput. Phys. 160, 743–765.

    Article  MATH  Google Scholar 

  26. Mousseau, V.A., Knoll, D. A., and Reisner, J. (2002). An implicit nonlinearly consistent method for the two-dimensional shallow-water equations with Coriolis force.Mon. Wea. Rev. 130, 2611–2625.

    Article  Google Scholar 

  27. M. Pernice, and Tocci, M.D. (2001). A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations.SIAM J. Sci. Comput. 23, 398–418.

    Article  MATH  MathSciNet  Google Scholar 

  28. Reisner, J., Mousseau, V.A., Wyszogrodzki, A. and Knoll, D. A. (2005). An implicitly balanced hurricane model with physics-based preconditioning.Mon. Wea. Rev. 133, 1003–1022.

    Article  Google Scholar 

  29. Reisner, J., Wynne, S., Margolin, L. and Linn, R. (2000). Coupled atmospheric-fire modeling employing the method of averages.Mon. Wea. Rev. 128, 3683–3691.

    Article  Google Scholar 

  30. Reisner, J., Wyszogrodzki, A., Mousseau, V.A., and Knoll, D. A. (2003). An efficient physics-based preconditioner for the fully implicit solution of small-scale thermally driven atmospheric flows.J. Comput. Phys. 189, 30–44.

    Article  MATH  Google Scholar 

  31. Saad, Y. (1996).Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Knoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoll, D.A., Mousseau, V.A., Chacón, L. et al. Jacobian-free newton-krylov methods for the accurate time integration of stiff wave systems. J Sci Comput 25, 213–230 (2005). https://doi.org/10.1007/BF02728989

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728989

Key words

Navigation