Skip to main content
Log in

Fourth-order runge-kutta schemes for fluid mechanics applications

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Multiple high-order time-integration schemes are used to solve stiff test problems related to the Navier-Stokes (NS) equations. The primary objective is to determine whether high-order schemes can displace currently used second-order schemes on stiff NS and Reynolds averaged NS (RANS) problems, for a meaningful portion of the work-precision spectrum. Implicit-Explicit (IMEX) schemes are used on separable problems that naturally partition into stiff and nonstiff components. Non-separable problems are solved with fully implicit schemes, oftentimes the implicit portion of an IMEX scheme. The convection-diffusion-reaction (CDR) equations allow a term by term stiff/nonstiff partition that is often well suited for IMEX methods. Major variables in CDR converge at near design-order rates with all formulations, including the fourth-order IMEX additive Runge-Kutta (ARK2) schemes that are susceptible to order reduction. The semi-implicit backward differentiation formulae and IMEX ARK2 schemes are of comparable efficiency. Laminar and turbulent aerodynamic applications require fully implicit schemes, as they are not profitably partitioned. All schemes achieve design-order convergence rates on the laminar problem. The fourth-order explicit singly diagonally implicit Runge-Kutta (ESDIRK4) scheme is more efficient than the popular second-order backward differentiation formulae (BDF2) method. The BDF2 and fourth-order modified extended backward differentiation formulae (MEBDF4) schemes are of comparable efficiency on the turbulent problem. High precision requirements slightly favor the MEBDF4 scheme (greater than three significant digits). Significant order reduction plagues the ESDIRK4 scheme in the turbulent case. The magnitude of the order reduction varies with Reynolds number. Poor performance of the high-order methods can partially be attributed to poor solver performance. Huge time steps allowed by high-order formulations challenge the capabilities of algebraic solver technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, R. (1977). Diagonally implicit Runge-Kutta methods for stiff O.D.E.s.SIAM J. Num. Anal. 14(6), 1006–1021.

    Article  MATH  Google Scholar 

  2. Anderson, W. K. and Bonhaus, D. L. (1994). An implicit upwind algorithm for computing turbulent flows on unstructured grids.Comp. and Fluids 23(1), 1–21.

    Article  MATH  Google Scholar 

  3. Ascher, U. M., Ruuth, S. J., and Wetton, B. T. R. (1995). Implicit-explicit methods for time-dependent partial differential equations.SIAM J. Num. Anal. 32(3), 797–823.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ascher, U. M., Ruuth, S. J., and Spiteri, R. J. (1997). Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations.Appl. Num. Math. 25(2–3), 151–167.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bijl, H., Carpenter, M. H., Vatsa, V. N., and Kennedy, C. A. (2002). Time integration schemes for the unsteady Navier-Stokes equations.J. Comp. Phys. 179(1), 313–329.

    Article  MATH  Google Scholar 

  6. Butcher, J. C. (1987).The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods, John Wiley, New York.

    MATH  Google Scholar 

  7. Butcher, J. C. (1993). Diagonally-implicit multi-stage integration methods.Appl. Num. Math. 11(5), 347–363.

    Article  MATH  MathSciNet  Google Scholar 

  8. Butcher, J. C. (2001). General linear methods for stiff differential equations.BIT 41(2), 240–264.

    Article  MATH  MathSciNet  Google Scholar 

  9. Calvo, M. P., de Frutos, J., and Novo, J. (2001). Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations.Appl. Num. Math. 37(4), 535–549.

    Article  MATH  Google Scholar 

  10. Carpenter, M. H., Viken, S. A., and Nielsen, E. J. (2003). The Efficiency of High Order Temporal Schemes,AIAA-2003-0086, 41st Aerospace Sciences Meeting & Exhibit, January 2003, Reno, NV.

  11. Cash, J. R. (1980). On the integration of stiff systems of O.D.E.’s using extended backward differentiation formulae.Numer. Math. 34(3), 235–246.

    Article  MATH  MathSciNet  Google Scholar 

  12. Cash, J. R. (1983). The integration of stiff systems of O.D.E.’s using modified extended backward differentiation formulae.Comp. and Math. with Appls. 9(5), 645–657.

    Article  MATH  MathSciNet  Google Scholar 

  13. Dekker, K. and Verwer, J. G. (1984).Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam, Netherlands.

    MATH  Google Scholar 

  14. Gustafsson, K., Lundh, M., and Söderlind, G. (1988). A PI-stepsize control for the numerical solution of ordinary differential equations,BIT 28(2), 270–287.

    Article  MATH  MathSciNet  Google Scholar 

  15. Gustafsson, K. (1991). Control theoretic techniques for stepsize selection in Runge-Kutta methods.ACM Trans. Math. Soft. 17(4), 533–554.

    Article  MATH  MathSciNet  Google Scholar 

  16. Gustafsson, K. (1994). Control theoretic techniques for stepsize selection in implicit Runge-Kutta methods.ACM Trans. Math. Soft. 20(4), 496–517.

    Article  MATH  MathSciNet  Google Scholar 

  17. Gustafsson, K., and Söderlind, G. (1997). Control strategies for the iterative solution of nonlinear equations in ODE solvers.SIAM J. Sci. Comput. 18(1), 23–40.

    Article  MATH  MathSciNet  Google Scholar 

  18. Hairer, E., Lubich, Ch., and Roche, M. (1988). Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations.BIT 28(3), 678–700.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hairer, E., Nørsett, S. P., and Wanner, G. (1993).Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed., Springer-Verlag, Berlin.

    MATH  Google Scholar 

  20. Hairer, E., and Wanner, G. (1996).Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed., Springer-Verlag, Berlin.

    MATH  Google Scholar 

  21. Kennedy, C. A. and Carpenter, M. H. (2003). Additive Runge-Kutta schemes for convection-diffusion-reaction equations.Appl. Num. Math. 44(1–2), 139–181.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kværnø, A., Nørsett, S. P., and Owren, B. (1996). Runge-Kutta research in Trondheim,Appl. Num. Math. 22(1–3), 263–277.

    Article  Google Scholar 

  23. Kværnø, A. (2004). Singly diagonally implicit Runge-Kutta methods with an explicit first stage,BIT,44(3), 489–502.

    Article  MathSciNet  Google Scholar 

  24. Lambert, J. D., (1991).Numerical Methods for Ordinary Differential Systems. The Initial Value Problem. John Wiley, Chichester.

    MATH  Google Scholar 

  25. Melson, N. D., Sanetrik, M. D., and Atkins, H. L. (1993). Time-accurate Navier-Stokes calculations with multigrid acceleration,Proceedings of the Sixth Copper Mountain conference on multigrid methods, Copper Mountain, Colorado, April, 1993, Melson, N. D., McCormick, S. F., and Manteuffel, T. A. (eds.), NASA publication3224(2), 423–437.

  26. Radakrishnan, K., and Hindmarsh, A. C. (1993)Description of LSODE, the Livermore Solver for Ordinary Differential Equations, NASA RP-1327, LLNL Laboratory Report UCRL-ID-113885, NASA Lewis Research Center, Cleveland, http://www.llnl.gov/CASC/odepack/

  27. Roe, P. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes.J. Comp. Phys. 43, 357–372.

    Article  MATH  MathSciNet  Google Scholar 

  28. Shampine, L. F., (1994).Numerical Solution of Ordinary Differential Equations. Chapman & Hall, New York.

    MATH  Google Scholar 

  29. Spalart, P. R. and Allmaras, S. R. (1992). A one-equation turbulence model for aerodynamic flows,AIAA Paper 92-0439, 30th Aerospace Sciences Meeting and Exhibit, January 1992, Reno, NV.

  30. Townsend, A. A. (1976).The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  31. Van Leer, B. (1982). Flux vector splitting for the Euler equations, In Krause, E. (ed.),Lecture Notes in Physics,170, Springer-Verlag, Berlin, 501–512.

    Google Scholar 

  32. Vatsa, V. N. and Wedan, B. W. (1990). Development of a multigrid code for 3D Navier-Stokes equations and its application to a grid-refinement study,Comp. Fluids 18(4), 391–403.

    Article  MATH  Google Scholar 

  33. Verwer, J. G. (1986). Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the method of lines. Griffiths D. F., and Watson, G. A. (eds.),Numerical Analysis, Res. Notes in Math. Ser. 140. Burnt Mill, Harlow, Essex, England: Longman Sci. Tech.; NY., 220–237.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, M.H., Kennedy, C.A., Bijl, H. et al. Fourth-order runge-kutta schemes for fluid mechanics applications. J Sci Comput 25, 157–194 (2005). https://doi.org/10.1007/BF02728987

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728987

Key words

Navigation