Skip to main content
Log in

On high order strong stability preserving runge-kutta and multi step time discretizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Strong stability preserving (SSP) high order time discretizations were developed for solution of semi-discrete method of lines approximations of hyperbolic partial differential equations. These high order time discretization methods preserve the strong stability properties-in any norm or seminorm—of the spatial discretization coupled with first order Euler time stepping. This paper describes the development of SSP methods and the recently developed theory which connects the timestep restriction on SSP methods with the theory of monotonicity and contractivity. Optimal explicit SSP Runge-Kutta methods for nonlinear problems and for linear problems as well as implicit Runge-Kutta methods and multi step methods will be collected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carpenter, M., and Kennedy, C. (1994).Fourth-order 2N-storage Runge-Kutta schemes, NASA TM 109112, NASA Langley Research Center.

  2. Chen, M.-H., Cockburn, B., and Reitich, F. High order RKDG methods for computational electromagnetics. Submitted.

  3. Cockburn, B., and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework,Math. Comput. 52, 411–435.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ferracina, L., and Spijker, M.N. (2002). Stepsize Restrictions for the total variation diminishing property in general Runge-Kutta methods.Num. Anal. Reports of Leiden University, Report MI 2002-21.

  5. Ferracina, L., and Spijker, M.N. (2005). An extension and analysis of the Shu-Osher representation of Runge-Kutta method.Math. Comput. 74, 201–219.

    Article  MATH  MathSciNet  Google Scholar 

  6. Gottlieb, S., and Gottlieb, L.-J. (2003).Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators, J. Sci. Compu. 18, 83–110.

    Article  MATH  MathSciNet  Google Scholar 

  7. Gottlieb, S., and Shu, C.-W. (1998). Total variation diminishing Runge-Kutta schemes,Math. Compu. 67, 73–85.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong stability preserving high-order time discretization methods,SIAM Review 43, 89–112.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gottlieb, D., and Tadmor, E. (1995). The CFL condition for spectral approximations to hyperbolic initial-boundary value problems,Math. Comput. 56, 565–588.

    MathSciNet  Google Scholar 

  10. Gottlieb, S., and Ruuth, S.J. Strong stability preserving Runge-Kutta methods for fast downwind biased discretizations, to appear inJ. Sci. Comput.

  11. Harten, A. (1983).High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49, 357–393.

    Article  MATH  MathSciNet  Google Scholar 

  12. Higueras, I. (2004) On strong stability preserving methods.J. Sci Comput. 21, 193–223.

    Article  MATH  MathSciNet  Google Scholar 

  13. Higueras, I. (2003).Representations of Runge-Kutta Methods and Strong Stability Preserving Methods, Preprint Departmento de Matematica e Informatica, No. 2, seccion 1, Universidad Publica de Navarra.

  14. Hundsdorfer, W., Ruuth, S.J., and Spiteri, R.J. (2003). Monotonicity-preserving linear multistep methods.SIAM J. Num. Anal. 41, 605–623.

    Article  MATH  MathSciNet  Google Scholar 

  15. Kennedy, C., Carpenter, M., and Lewis, R. (2000). Low storage explicit Runge-Kutta schemes for the compressible navier-stokes equations,Appl. Nume. Math. 35, 177–219.

    Article  MATH  MathSciNet  Google Scholar 

  16. Kraaijevanger, J.F.B.M. (1986).Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems, Numerische Mathematik 48, 303–322.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kraaijevanger, J.F.B.M. (1991).Contractivity of Runge-Kutta methods, BIT 31, 482–528.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kurganov, A., and Tadmor, E.New high-resolution schemes for nonlinear conservation laws and related convection-diffusion equations, UCLA CAM Report No. 99-16.

  19. Lenferink, H.W.J. (1991). Contractivity preserving implicit linear multi step methods,Math. Comput. 56, 177–199.

    Article  MATH  MathSciNet  Google Scholar 

  20. Levy, D. and Tadmor, E. (1998). From semi-discrete to fully discrete: stability of Runge-Kutta schemes by the energy method.SIAM Review,40, 40–73.

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, X-D., Osher, S., and Chan, T. (1994). Weighted essentially non-oscillatory schemesJ. Comput. Phys. 115 (1), 200.

    Article  MATH  MathSciNet  Google Scholar 

  22. Nessyahu, H., and Tadmor, E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws,J. Comp. Phys. 87, 408–463.

    Article  MATH  MathSciNet  Google Scholar 

  23. Osher, S., and Chakravarthy, S. (1984). High resolution schemes and the entropy condition.SIAM J. Num. Anal. 21, 955–984.

    Article  MATH  MathSciNet  Google Scholar 

  24. Osher, S., and Tadmor, E. (1988). On the convergence of difference approximations to scalar conservation laws.Math. Comp. 50, 19–51.

    Article  MATH  MathSciNet  Google Scholar 

  25. Ruuth, S.J., and Spiteri, R.J. (2002). Two barriers on strong-stability-preserving time discretization methods.J. Sci. Comp. 17, 211–220.

    Article  MATH  MathSciNet  Google Scholar 

  26. Ruuth, S.J., and Spiteri, R.J. (2004). Downwinding in high-order strong-stability-preserving Runge-Kutta methods.SIAM J. Numer. Anal. 42, 974–996.

    Article  MATH  MathSciNet  Google Scholar 

  27. Ruuth, S. Global optimization of strong-stability preserving Runge-Kutta methods, to appear inMath. Comput.

  28. Shu, C.-W. (1988). Total-variation-diminishing time discretizations.SIAM J. Sci. Stat. Comput. 9, 1073–1084.

    Article  MATH  Google Scholar 

  29. Shu, C.-W., and Osher, S. (1998). Efficient implementation of essentially non-oscillatory shock-capturing schemes.J. Comput. Phy. 77, 439–471.

    Article  MathSciNet  Google Scholar 

  30. Shu, C.-W. (2002). A survey of strong stability preserving high order time discretizations. In Estep, D. and Tavener, S. Collected Lectures on the Preservation of Stability under Discretization SIAM, pp. 51–65.

  31. Spiteri, R.J., and Ruuth, S.J., (2002). A new class of optimal high-order strong-stability-preserving time discretization methods. SIAMJ. Numer. Anal. 40, 469–491.

    Article  MATH  MathSciNet  Google Scholar 

  32. Spiteri, R.J., and Ruuth, S.J. (2003). Nonlinear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods.J. Math. Comput. Simul. 62, 125–135.

    Article  MATH  MathSciNet  Google Scholar 

  33. Strang, G. (1964). Accurate partial difference methods II: nonlinear problems.Numerische Mathematik 6, 37.

    Article  MATH  MathSciNet  Google Scholar 

  34. Strikwerda, J.C. Finite difference schemes and partial differential equations.Wadsworth and Brooks/Cole Mathematics Series. California 1989.

  35. Sweby, P.K. (1984) High resolution schemes using flux limiters for hyperbolic conservation laws.SIAM J. Num. Anal. 21, 995–1011.

    Article  MATH  MathSciNet  Google Scholar 

  36. Tadmor, E. (1988). Approximate solutions of nonlinear conservation laws. In Quarteroni, A. (ed.), ”Advanced Numerical Approximation of Nonlinear Hyperbolic Equations,”Lectures Notes from CIME Course Cetraro, Italy, 1997 Lecture Notes in Mathematics 1697, Springer-Verlag, Berlin pp. 1–150.

    Google Scholar 

  37. Williamson, J.H. (1980). Low-storage Runge-Kutta schemes.J. Comput. Phys. 35, 48–56.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigal Gottlieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottlieb, S. On high order strong stability preserving runge-kutta and multi step time discretizations. J Sci Comput 25, 105–128 (2005). https://doi.org/10.1007/BF02728985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728985

Key words

AMS (MOS) Subject Classification

Navigation