Skip to main content
Log in

On symplectic and multisymplectic schemes for the KdV equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We examine some symplectic and multisymplectic methods for the notorious Korteweg-de Vries equation, with the question whether the added structure preservation that these methods offer is key in providing high quality schemes for the long time integration of nonlinear, conservative partial differential equations. Concentrating on second order discretizations, several interesting schemes are constructed and studied. Our essential conclusions are that it is possible to design very stable, conservative difference schemes for the nonlinear, conservative KdV equation. Among the best of such schemes are methods which are symplectic or multisymplectic. Semi-explicit, symplectic schemes can be very effective in many situations. Compact box schemes are effective in ensuring that no artificial wiggles appear in the approximate solution. A family of box schemes is constructed, of which the multisymplectic box scheme is a prominent member, which are particularly stable on coarse space-time grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., and McLachlan, R.I., (2004). Multisymplectic box schemes and the Korteweg-de Vries equation.Appl. Numer. Algorithms. 48, 255–269.

    MATH  MathSciNet  Google Scholar 

  2. Bridges, T.J. (1997). Multi-symplectic structures and wave propagation.Math. Proc. Camb. Phil. Soc. 121, 147–190.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bridges, T.J., and Reich, S. (2001). Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity.Phys. Lett. A,284(4–5), 184–193.

    Article  MATH  MathSciNet  Google Scholar 

  4. Budd, C.J., and Piggott, M.D. (2003). Geometric Integration and its Applications.Handbook of Numerical Analysis vol. XI In P.G. Ciarlet and F. Cucker (eds.), North-Holland Amsterdam, pp. 35–139.

    Chapter  Google Scholar 

  5. Croisille, J.-P. (2002). Keller’s box-scheme for the one-dimensional stationary convection-diffusion equation.Computing 68(1), 37–63.

    Article  MATH  MathSciNet  Google Scholar 

  6. Drazin, P.G., and Johnson, R.S. (1989).Solitons: An Introduction. Cambridge University Press, Cambridge, London.

    MATH  Google Scholar 

  7. Furihata, D. (1999). Finite difference schemes for ∂ut(∂/∂x)αg/∂u that inherit energy conservation or dissipation property.J. Comp. Phys. 156, 181–205.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gustafsson, B., Kreiss, H.-O., and Oliger, J. (1995).Time Dependent Problems and Difference Methods. Wiley and Sons, New York.

    MATH  Google Scholar 

  9. Hairer, E., Lubich, C., and Wanner, G.Geometric Numerical Integration. Springer, Berlin.

  10. Hou, T.Y., and Lax, P.D. (1991). Dispersive approximation in fluid dynamics.Comm. Pure Appl. Math. 44, 1–40.

    Article  MATH  MathSciNet  Google Scholar 

  11. Keller, H.B. (1971). A new difference scheme for parabolic problems. InNumerical Solution of Partial Differential Equations, II (SYNSPADE 1970) Academic Press, New York. pp. 327–350.

    Google Scholar 

  12. Kreiss, H.-O. (1964). On difference approximations of the dissipative type for hyperbolic differential equations.Comm. Pure Appl. Math. 17, 335–353.

    Article  MATH  MathSciNet  Google Scholar 

  13. Lax, P.D., and Levermore, C.D. (1983). The small dispersion limit of the Korteweg-de Vries equation.Comm. Pure Appl. Math. 36, 253–290, 571–593, 809–829.

    Article  MATH  MathSciNet  Google Scholar 

  14. McLachlan, R.I., and Quispel, G.R.W. (2002). Splitting methods.Acta Numerica,11, 341–434.

    Article  MATH  MathSciNet  Google Scholar 

  15. McLachlan, R.I. (1994). Symplectic integration of Hamiltonian wave equations.Numer. Math. 66, 465–492

    Article  MATH  MathSciNet  Google Scholar 

  16. Preissmann, A. (1961). Propagation des intumescences dans les canaux et rivières. InFirst Congress French Assoc. for Computation, Grenoble.

  17. Reich, S. (2000). Finite volume methods for multi-symplectic PDEs.BIT,40, 559–582.

    Article  MATH  MathSciNet  Google Scholar 

  18. Reich, S. (2000). Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations.J. Comput. Phys. 157(2), 473–499.

    Article  MATH  MathSciNet  Google Scholar 

  19. Richtmyer, R.D., and Morton, K.W. (1967).Difference Methods for Initial-Value Problems. Wiley, New York.

    MATH  Google Scholar 

  20. Sanz-Serna, J.M., and Calvo, M.P. (1994).Numerical Hamiltonian Problems, Chapman and Hall, London.

    MATH  Google Scholar 

  21. Trefethen, L.N. (1997). Pseudospectra of linear operators.SIAM Review 39, 383–406.

    Article  MATH  MathSciNet  Google Scholar 

  22. Turner, C.V., and Rosales, R.R. (1997). The small dispersion limit for a nonlinear semidiscrete system of equation.Studies Appl. Math. 99, 205–254.

    Article  MATH  MathSciNet  Google Scholar 

  23. Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states.Phys. Rev. 15, 240–243.

    Google Scholar 

  24. Zhao, P.F. and Qin, M.Z. (2000). Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation.J Phys. A,33(18), 3613–3626.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. M. Ascher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascher, U.M., McLachlan, R.I. On symplectic and multisymplectic schemes for the KdV equation. J Sci Comput 25, 83–104 (2005). https://doi.org/10.1007/BF02728984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728984

Key words

Navigation