Skip to main content
Log in

On goldstone’s theorem for a class of currents not covariant under translations

О теореме Голдстоуна для класса токов, не ковариантных относительно трансляций

  • Published:
Il Nuovo Cimento A (1971-1996)

Summary

A class of currents not covariant under space-time translations is considered. The assumptions about the members of such class are deduced from some general properties of frequently used symmetry transformations,e.g. gauge transformations of second kind and dilatation transformations. In the framework of Wightman field theory Goldstone’s theorem is proved, without use of Lorentz covariance and positivity for the metric.

Riassunto

Si studia una classe di correnti che non sono covarianti per trasformazioni spaziotemporali. Le ipotesi sulle correnti appartenenti a tale classe sono dedotte da proprietà generali di trasformazioni di simmetria spesso usate in teoria dei campi, per esempio le trasformazioni di gauge di seconda specie e le dilatazioni. Si dimostra il teorema di Goldstone per tali correnti nello schema di una teoria di campo alla Wightman, Senza far uso della covarianza di Lorentz e della positività della metrica.

Реэюме

Рассматривается класс токов, не ковариантных относительно про-стр анственно-временных трансляций. Иэ некоторых обших свойств часто испольэуемых преобраэований симметри, т.е. калибровочных преобраэований второго рода и преобраэований расщирения, выводятся предположения относительно членов такого класса токов. В рамках теории поля Вайтмана докаэывается теорема Голдстоуна беэ испольэования Лорентц-ковариан тности и положительности для метрики.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Goldstone:Nuovo Cimento,19, 154 (1961);J. Goldstone, A. Salam andS. Weinberg:Phys. Rev.,127, 965 (1962).

    Article  MathSciNet  Google Scholar 

  2. R. F. Streater:Proc. Roy. Soc., A287, 510 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Kastler, D. W. Robinson andA. Swieca:Comm. Math. Phys.,2, 108 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Swieca:Phys. Rev. Lett.,17, 974 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Ezawa andA. Swieca:Comm. Math. Phys.,5, 330 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  6. Review papers on spontaneously broken symmetries:D. W. Robinson: inSymmetry Principles and Fundamental Particles (San Francisco, 1966).

  7. A. Swieca:Lecture Notes from 1969 Cargése Summer School in Theoretical Physics, Cargése.

  8. H. Reeh:Fortschr. Phys.,16, 687 (1968); here the Goldstone theorem is proved for the dilatation transformations.H. Reeh:Symmetries, currents and infinitesimal generators, talk delivered at theInternational Seminar on Statistical Mechanics and Field Theory, Haifa, Max-Planck-Institut preprint. The author thanks Prof.H. Reeh for pointing out to him this work where the Goldstone theorem is proved also for conformal transformations.

    Article  Google Scholar 

  9. C. Orzalesi:Rev. Mod. Phys.,42, 381 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Ferrari andL. E. Picasso:Nucl. Phys.,20 B, 553 (1970).

    Article  ADS  Google Scholar 

  11. K. Symanzik:Comm. Math. Phys.,16, 48 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  12. H. Reeh:Nuovo Cimento,4 A, 566 (1971).

    Article  ADS  Google Scholar 

  13. R. Ferrari andL. E. Picasso:Nucl. Phys.,31 B, 316 (1971).

    Article  ADS  Google Scholar 

  14. For details see ref. (6).

  15. R. F. Streater andA. S. Wightman:PCT, Spin and Statistics and All That, Chap. 3 (New York, 1964).

  16. See ref. (10) for a discussion about the consequences of this property.

    Article  ADS  Google Scholar 

  17. R. Jost andK. Hepp:Helv. Phys. Acta,35, 34 (1962).

    MathSciNet  Google Scholar 

  18. H. Araki, K. Hepp andD. Ruelle:Helv. Phys. Acta,35, 164 (1962).

    MathSciNet  Google Scholar 

  19. L. Schwartz:Théorie des distributions (Paris, 1966).

  20. L. Gårding andJ. L. Lions:Suppl. Nuovo Cimento,14, 9 (1959).

    Article  ADS  Google Scholar 

  21. See ref. (14), Chap. VII, and ref. (15), Sect. 7.1.2.

  22. It will be clear from eq. (17), to come, that the Goldstone theorem is still valid if II) is weakened in the form: It exists aΛ for which ∂μJμ[Λ](x)=0 andJμ[□Λ](x) generates an exact symmetry. This is the case, for instance, of the conformal transformations (seeH. Reeh:Lectures at the International Seminar on Statistical Mechanics and Field Theory, Haifa ref. (9)).

    Article  ADS  Google Scholar 

  23. See ref. (15)), Sect.11.2.

    Article  ADS  Google Scholar 

  24. See ref. (14), Chap. 4, Sect.5.

  25. See ref. (14), Chap. 3, Sect.3 (Theorem XIII) and Chap. 7, Sect.6 (theorem XIII).

  26. F. Riesz andB. Sz. Nagy:Leçons d’analyse fonctionnelle (Académie des Sciences de Hongrie, 1955), Sect.50.

  27. See ref. (21), Sect.137.

  28. See ref. (14), Chap. 1, Sect.2.

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, R. On goldstone’s theorem for a class of currents not covariant under translations. Nuov Cim A 14, 386–402 (1973). https://doi.org/10.1007/BF02728960

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728960

Navigation