Skip to main content
Log in

A generalization of chiralSW 3 model

Обобшение чиралыюйSW 3 модели

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

Assuming the algebra of currents, PCAC for pions, and some other technical conditions, we prove that any Hamiltonian densityH(x), whoseSU 3-breaking component belongs to the (3, 3*)⊕(3*, 3) representation of theSW 3-group, must automatically have the following structure:H(x)=H 0(x)+H 1(x)+H 2(x).H 0(x) is invariant underSW 3,H 1(x) breaksSU 3 but is invariant underSW 2, whileH 2(x) is invariant underSU 3 but violatesSW 2. Also,H 2(x) will vanish in the soft-pion limit. This model contains, as special cases, the schemes of Gell-Mann, Oakes and Renner, and of Glashow and Weinberg.

Riassunto

Adottando l’algebra delle correnti, la PCAC per i pioni, ed alcune altre condizioni tecniche, si dimostra che ogni densità hamiltonianaH(x), le cui componenti che infrangono la simmetria appartengono alla rappresentazione (3, 3*)⊕(3*, 3) del gruppoSW 3, deve automaticamente avere la seguente struttura:H(x)−H 0(x)+H 1(x)+H 2(x).H 0(x) è invariante rispetto aSW 3,H 1(x) infrangeSU 3 ma è invariante rispetto aSW 2, mentreH 2(x) è invariante rispetto aSU 3 ma violaSW 2. InoltreH 2(x) tende a zero nel limite del pione molle. Questo modello contiene come casi speciali gli schemi di Gell-Mann, Oakes e Rennes, e di Glashow e Weinberg.

Реэюме

Предполагая алгебру токов, РСАС для пионов и некоторые другие технические условия, докаэывается, что любая плотность ГамильтонианаH (x) чья компонента, нарущаюшаяSU 3, принадлежит (3, 3*)⊕(3*, 3) представлению группыSW 3, должна автоматически иметь следуюшую структуру:H(x)=H 0(x)++H 1(x)+H 2(x).H 0(x) является инвариантным относительноSW 3,H 1(x) нарущаетSU 3, но является инвариантным относительноSW 2, тогда какH 2(x) инвариантно относительноSU 3, но нарущаетSW 2. Кроме того,H 2(x) обрашается в нуль в пределе мягких пионов. Эта модель содержит, как честные случаи, схемы Гелл-Мана, Оакса и Реннера, и Глащоу и Вейнберга.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell-Mann, R. J. Oakes andB. Renner:Phys. Rev.,175, 2195 (1968).

    Article  ADS  Google Scholar 

  2. S. L. Glashow andS. Weinberg:Phys. Rev. Lett.,20, 224 (1968).

    Article  ADS  Google Scholar 

  3. S. Okubo andV. S. Mathur:Phys. Rev. D,1, 2046 (1970);V. S. Mathur andS. Okubo:Phys. Rev. D,1, 3468 (1970).

    Article  ADS  Google Scholar 

  4. F. von Hippel andJ. Kim:Phys. Rev. D,1, 151 (1970).

    Article  ADS  Google Scholar 

  5. H. Kleinert, F. Steiner andP. Weisz:Phys. Lett.,34 B, 312 (1971).

    Article  ADS  Google Scholar 

  6. T. P. Cheng andR. Dashen:Phys. Rev. Lett.,26, 549 (1971).

    Article  Google Scholar 

  7. G. Höhler, H. P. Jakob andR. Strauss:Phys. Lett.,35 B, 445 (1971);M. Ericson andM. Rho:Phys. Lett.,36 B, 93 (1971).

    Article  ADS  Google Scholar 

  8. R. A. Brandt andG. Preparata:Ann. of Phys.,61, 119 (1970);Lett. Nuovo Cimento,4, 80 (1970).

    Article  ADS  Google Scholar 

  9. M. Gell-Mann:Lectures at the University of Hawaii Summer School (1969), unpublished.

  10. G. Altarelli, N. Cabibbo andL. Maiani:Phys. Lett.,35 B, 415 (1971);R. J. Crewther:Phys. Rev. D,3, 3152 (1971);J. Ellis: to be published in theProceedings of the 1971 Coral Gables Conference on Fundamental Interactions at High Energy.

    Article  ADS  Google Scholar 

  11. E.g.,S. Weinberg: inProceedings of the 1968 High-Energy Conference at Vienna, edited byJ. Prentki andJ. Steinberger (Geneva, 1968).

  12. R. Olshansky andK. Kang:Phys. Rev. D,3, 2094 (1971);V. S. Mathur andT. C. Yang: to be published.

    Article  ADS  Google Scholar 

  13. R. Arnowitt, M. A. Friedman andP. Nath:Phys. Rev. Lett.,26, 104 (1971);F. C. P. Chan:Phys. Rev. D,4, 189 (1971);K. Schilcher:Phys. Rev. D,4, 237 (1971). These authors include the (1, 8)⊕(8, 1)SW 3-breaking interaction in addition to the (3, 3*)⊕(3*, 3) type, in order to explain the Kt3 decay parameters.

    Article  ADS  Google Scholar 

  14. S. Okubo:Phys. Rev., to appear;S. Okubo andI. F. Shith:Phys. Rev., to be published;I. F. Shih andS. Okubo: to be published.

  15. R. Dashen:Phys. Rev. D,3, 1879 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  16. Riazuddin andS. Oneda:Phys. Rev. Lett.,27, 548 (1971).

    Article  ADS  Google Scholar 

  17. J. Schechter andY. Ueda:Phys. Rev. D,3, 2874 (1971);H. Osborne andD. J. Wallace:Nucl. Phys.,20 B, 23 (1970);V. S. Mathur, S. Okubo andJ. Subba Rao:Phys. Rev. D,1, 2058 (1970).

    Article  ADS  Google Scholar 

  18. K. J. Barnes andC. J. Isham:Nucl. Phys.,17 B, 267 (1970);A. M. H. RashidnadM. A. Rashid:Phys. Rev. D,3, 581 (1971).

    Article  ADS  Google Scholar 

  19. This has been proved under some conditions byD. J. Gross andR. Jackiw:Phys. Rev.,163, 1688 (1967). See also,D. N. Levin:Phys. Rev. D,3, 1320 (1971), who reaches a similar conclusion for the electromagnetic current. However, it is possible that this assumption may not hold in some models. (SeeD. Boulware andR. Jackiw:Phys. Rev.,186, 1442 (1969).)

    Article  ADS  Google Scholar 

  20. S. Okubo:Phys. Rev. D,3, 409 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  21. Of course, the PCAC may be regarded as a definition of the pion field in view of Haag-Nishijima-Zimmerman theorem. See, for example,S. Okubo andR. E. Marshak:Phys. Rev.,123, 382 (1961).

    Article  ADS  Google Scholar 

  22. There is a sign misprint in eq. (1.6) of ref. (20). The correct equation is eq. (2.3) of the present paper, which changes the sign of the second term on the right-hand side.

    Article  MathSciNet  ADS  Google Scholar 

  23. D. J. Gross andR. Jackiw:Phys. Rev.,163, 1688 (1967);T. K. Kuo andM. Sugawara:Phys. Rev.,163, 1716 (1967).

    Article  ADS  Google Scholar 

  24. L. Gomberoff: preprint.

  25. S. Coleman:Phys. Lett.,19, 144 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Dashen andH. Weinstein:Phys. Rev. Lett.,22, 1337 (1969).

    Article  ADS  Google Scholar 

  27. C. J. Isham, A. Salam andJ. Strathdee:Phys. Rev. D,2, 685 (1970).

    Article  ADS  Google Scholar 

  28. J. Ellis: to be published in theProceedings of the 1971 Coral Gables Conference on Fundamental Interactions at High Energy;J. Ellis, P. H. Weisz andB. Zumino:Phys. Lett.,34 B, 91 (1971).

  29. H. Kleinert andP. H. Weisz:Lett. Nuovo Cimento,4, 1091 (1970);Nucl. Phys.,27 B, 23 (1971).

    Article  Google Scholar 

  30. R. Jackiw:Phys. Rev. D,3, 1347 (1356, (1971);K. Raman:Phys. Rev. Lett.,26, 1069 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  31. D. N. Levin andD. R. Palmer: to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Work supported in part by the U.S. Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, S. A generalization of chiralSW 3 model. Nuov Cim A 7, 765–778 (1972). https://doi.org/10.1007/BF02728809

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728809

Navigation