Skip to main content
Log in

Four-dimensional symmetry from a broad viewpoint.

IX.–Finite quantum «elecweakdynamics»

  • Published:
Il Nuovo Cimento B (1971-1996)

Most physicists are very satisfied with this situation («successful» renormalization). They argue that, if one has rules for doing calculations and the results agree with observation, that is all that one requires. But it is not all that one requires. One requires a single comprehensive theory applying to all physical phenomena. Not one theory for dealing with nonrelativistic effects and a separate disjoint theory for dealing with certain relativistic effects. Furthermore, the theory has to be based on sound mathematics.... The renormalization idea would be sensible only if it was applied with finite renormalization factors, not infinite ones.P.A.M. Dirac Mathematical Foundations of Quantum Theory

Summary

We propose a finite and unitary quantum «elecweakdynamics» with the «SU 2×U 1 structure» which may not have the full gauge symmetry. The Higgs scalar fields are not necessary. Gaugeboson massesM W andM Z can be generated by kinematical symmetry-breaking due to the coupling of vacuum fields and gauge fields. It is a local interaction theory formulated on the basis of i) a new principle of universal probability distributionP(p, m) for field oscillators of all fields and ii) the new four-dimensional symmetry framework of «common relativity». We do not employ the four-dimensional framework of special relativity because it is too restrictive to allow the universal probability principle. This principle introduces a radical lengthR into physics and changes drastically the high-energy behaviour of propagators. It makes the theory finite without upsetting unitarity. We show how scattering cross-sections, static electric potential and particle decay in flight are affected by the universal probability principle. These modifications can be tested experimentally.

Riassunto

Si propone una «dinamica elettrodebole» finita e unitaria con strutturaSU 2×U 1 che può non avere simmetria di gauge completa. Si tratta di una teoria di campo locale formulata sulla base di i) un nuovo principio di distribuzione di probabilità universaleP(p, m) per oscillatori di campo di tutti i campi e ii) di un nuovo sistema a simmetria quadridimensionale della «relatività comune». Non si usa il sistema quadridinemsionale della relatività speciale perchè è troppo restrittivo per permettere il principio di probabilità universale. Questo principio introduce una lunghezza radicaleR in fisica e cambia drasticamente il comportamento dei propagatori ad alta energia. Ciò rende la teoria finita senza sconvolgere l'unitarietà. Si mostra come le sezioni d'urto di scattering, il potenziale elettrico statico e il decadimento della particella in volo siano influenzati dal principio di probabilità universale. Queste modifiche possono essere controllate sperimentalmente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heitler: inThe Quantum Theory of Fields, edited byR. Stoops (Interscience Publ., New York, N. Y., 1962), p. 37;N. Nakanishi:Prog. Theor. Phys. Suppl.,51, 1 (1972).

    Google Scholar 

  2. J. Schwinger:Quantum Electrodynamics (Dover Publ., Inc., New York, N. Y., 1958), p. 16.

    MATH  Google Scholar 

  3. J. P. Hsu:Nuovo Cimento B,74, 67 (1983);78, 85 (1983);Phys. Lett. A.,97, 137 (1983). See also Nature Editorial (Nature,303, 129 (1983)) for a discussion of common time in four-dimensional framework. For recent applications of a scalar evolution variable in many-particle systems, seeJ. P. Hsu andT. Y. Shi:Phys. Rev. D,26, 2745 (1982);J. P. Hsu:Nuovo Cimento B,75, 185 (1983);Phys. Rev. D,24, 802 (1981). The idea of having a common time for all observers (or frames) is very simple. For example, the observers in a train (F′-frame) and the observers on the ground (F 0-frame) can use the same clock system in, say, theF 0-frame. To embed this idea in the four-dimensional symmetry framework is not so trivial. SeeJ. P. Hsu andT. N. Sherry:Found. Phys.,10, 57 (1980).

    Article  ADS  Google Scholar 

  4. J. P. Hsu:Nuovo Cimento A,56, 1 (1980);55, 145 (1980). See also ref. (1,2,5).W. Heitle: inThe Quantum Theory of Fields, edited byR. Stoops (Interscience Publ., New York, N. Y., 1962), p. 37;N. Nakanishi:Prog. Theor. Phys. Suppl.,51, 1 (1972).J. Schwinger:Quantum Electrodynamics (Dover Publ., Inc., New York, N. Y., 1958), p. 16. This is to be compared with the result in the previous work,J. P. Hsu andE. Mac:Nuovo Cimento B,49, 55 (1979).

    Article  ADS  MATH  Google Scholar 

  5. This is to be compared with the result in the previous work,J. P. Hsu andE. Mac:Nuovo Cimento B,49, 55 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  6. J. D. Bjorken andS. D. Drell:Relativistic Quantum Fields (McGraw-Hill, Inc., New York, N. Y., 1980);J. J. Sakurai:Advanced Quantum Mechanics (Addison-Wesley Publ. Co., Reading, Mass., 1980).

    Google Scholar 

  7. Note thatA μ=(V, A) in common relativity have the same dimension asA μ/c in the usual theory because ∫L A d4 x andJ have the same dimension. Moreover, eV has the same dimension as mass and «energy momentum»p μ in the present theory. Thusm andp μ may also be expressed in the unit «ev» or «gev», which are respectively the same as eV/c2 and GeV/c2 in the usual theory.

  8. See, for example,J. P. Hsu:Phys. Rev. D,8 2609 (1973).

    Article  ADS  Google Scholar 

  9. T. D. Lee:Field Theories and Particle Physics, (Science Publ., Peking, 1980), Chapt. 5.

    Google Scholar 

  10. Ya. B. Zel'dovich:Sov. Phys. Usp.,11, 381 (1968);P. Langacher:Phys. Rep.,72, 216 (1981);J. Ellis:Phenomenology of unified gauge theories, TH-3174-CERN (1981).

    Article  ADS  Google Scholar 

  11. J. P. Hsu andE. Mac:J. Math. Phys. (N.Y.),18, 100 (1977);J. P. Hsu:Phys. Rev. Lett.,36, 646 (1976);Lett. Nuovo Cimento,19, 189 (1975).

    Article  ADS  Google Scholar 

  12. For a comprehensive discussion of vacuum, seeT. D. Lee:Field Theories and Particle Physics (Science Publ., Peking, 1980), Chapt. 16.

    Google Scholar 

  13. R. Feynman:Theory of Fundamental Processes, 2nd printing (Benjamin, Inc., 1962), p. 145.

  14. See, for example,N. Nakanishi:Prog. Theor. Phys. Suppl.,51, 1 (1972);J. P. Hsu andE. C. G. Sudarshan:Phys. Rev. D,9, 1678 (1974);Nucl. Phys. B.,91, 477 (1975).

    Article  ADS  Google Scholar 

  15. Moreover, the present formalism (especially the basic relations (9), (10), (2) and (3)) are in harmony with Dirac's viewpoints that the assumption of microcausality in field theories is very likely too stringent and that a less drastic assumption may be adequate,e.g., that there is a fundamental lengthR such that the commutator of two dynamical variables must vanish if they are localized at two points whose separation is spacelike and greater thanR but need not vanish if it is less thanR. SeeP. A. M. Dirac:Rev. Mod. Phys.,21, 392 (1949).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. The power and the effect of the probabilityP(k, m) given by (1) in suppressing the contribution of high energies in the present formalism can be seen more directly in a nonmanifestly covariant calculations. They should be compared with the cut-offs discussed byP. A. M. Dirac:Lectures on Quantum Field Theory, 2nd printing (Academic Press, New York, N. Y., 1967), p. 102.

    Google Scholar 

  17. Based on Feynman's approach, one may think that the inherent probabilityP(k, 0) for the oscillators of the photon field should not affect the potentialV(r) in (14), becauseV(r) should come fromD μν(x), μ=ν=0, which makes no reference to oscillators of the photon field. The key here is that in Feynman's approach one uses δ4(x) which presupposes that all plane waves can be realized in nature with equal probability amplitude. This presupposition is equivalent to assuming that all states of field oscillators can be equally probable,i.e. P(k, 0)=1. SeeJ. P. Hsu:Nuovo Cimento B,88, 140 (1985).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by Southeastern Massachusetts University (permanent address).

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, J.P. Four-dimensional symmetry from a broad viewpoint.. Nuov Cim B 89, 30–46 (1985). https://doi.org/10.1007/BF02728502

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728502

Keywords

Navigation