Locality and causality in time-dependent Aharonov-Bohm interference

Summary

Using the path-integral method we analyse the effect of a time-varying (stepped) enclosed magnetic flux on the Aharonov-Bohm (AB) phase shift in the two-slit interference pattern of electron wavepackets. We find the magnetic phase shift to vary continuously between zero and the full AB value depending on the timing of the flux increment. This behaviour is amenable to experimental verification. The special nature of the global features peculiar to the static AB effect emerges clearly from this study which supports a shift in emphasis away from the enclosed flux itself towards its vector potential, acting locally along the interfering Feynman (and, in a certain sense, the classical) trajectories.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Y. Aharonov andD. Bohm:Phys. Rev.,115, 485 (1959).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  2. [2]

    A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano andH. Yamada:Phys. Rev. Lett.,56, 792 (1986).

    ADS  Article  Google Scholar 

  3. [3]

    A. Tonomura, S. Yano, N. Osakabe, T. Matsuda, H. Yamada, T. Kawasaki andJ. Endo:Proceedings of the II International Symposium on Foundations of Quantum Mechanics (Physical Society of Japan, Tokyo, 1986), p. 97.

    Google Scholar 

  4. [4]

    N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano andH. Yamada:Phys. Rev. A,34, 815 (1986).

    ADS  Article  Google Scholar 

  5. [5]

    S. Olariu andI. I. Popescu:Rev. Mod. Phys.,57, 339 (1985).

    ADS  Article  Google Scholar 

  6. [6]

    N. G. van Kampen:Phys. Lett. A,106, 5 (1984).

    MathSciNet  ADS  Article  Google Scholar 

  7. [7]

    T. Troudet:Phys. Lett. A,111, 274 (1985).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  8. [8]

    E. Comay:J. Phys. A,20, 5729 (1987).

    ADS  Article  Google Scholar 

  9. [9]

    D. Home andS. Sengupta:Am. J. Phys.,51, 942 (1983).

    ADS  Article  Google Scholar 

  10. [10]

    S. M. Roy andV. Singh:Nuovo Cimento A,79, 391 (1984).

    MathSciNet  ADS  Article  Google Scholar 

  11. [11]

    D. H. Kove:J. Phys. A,18, 237 (1985).

    MathSciNet  ADS  Article  Google Scholar 

  12. [12]

    R. P. Feynman:Rev. Mod. Phys.,20, 367 (1948).

    MathSciNet  ADS  Article  Google Scholar 

  13. [13]

    R. P. Feynman andA. R. Hibbs:Quantum Mechanics and Path Integrals (McGraw-Hill, New York, N. Y., 1965).

    Google Scholar 

  14. [14]

    D. H. Kobe:Ann. Phys. (N.Y.),123, 381 (1974).

    ADS  Article  Google Scholar 

  15. [15]

    J. J. Sakurai:Modern Quantum Mechanics (Benjamin/Cummings, Menlo Park, Cal., 1985), chapt. 2.

    Google Scholar 

  16. [16]

    L. S. Schulman:Techniques and Applications of Path Integration (Wiley-Interscience, New York, N.Y., 1981).

    Google Scholar 

  17. [17]

    A. Messiah:Quantum Mechanics, Vol. I (North-Holland, Amsterdam, 1962), sect. VI.3.

    Google Scholar 

  18. [18]

    W. Bayh:Z. Phys. A,169, 492 (1962).

    Article  Google Scholar 

  19. [19]

    T. T. Wu andC. N. Yang:Phys. Rev. D,12, 3845 (1975).

    MathSciNet  ADS  Article  Google Scholar 

  20. [20]

    C. N. Yang:Phys. Rev. Lett.,33, 445 (1974).

    MathSciNet  ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

The authors of this paper have agreed to not receive the proofs for correction.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brown, R.A., Home, D. Locality and causality in time-dependent Aharonov-Bohm interference. Nuov Cim B 107, 303–316 (1992). https://doi.org/10.1007/BF02728492

Download citation

Keywords

  • PACS 03.65 Quantum theory, quantum mechanics