Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 107, Issue 3, pp 303–316 | Cite as

Locality and causality in time-dependent Aharonov-Bohm interference

  • R. A. Brown
  • D. Home
Article

Summary

Using the path-integral method we analyse the effect of a time-varying (stepped) enclosed magnetic flux on the Aharonov-Bohm (AB) phase shift in the two-slit interference pattern of electron wavepackets. We find the magnetic phase shift to vary continuously between zero and the full AB value depending on the timing of the flux increment. This behaviour is amenable to experimental verification. The special nature of the global features peculiar to the static AB effect emerges clearly from this study which supports a shift in emphasis away from the enclosed flux itself towards its vector potential, acting locally along the interfering Feynman (and, in a certain sense, the classical) trajectories.

Keywords

PACS 03.65 Quantum theory, quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Aharonov andD. Bohm:Phys. Rev.,115, 485 (1959).MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano andH. Yamada:Phys. Rev. Lett.,56, 792 (1986).ADSCrossRefGoogle Scholar
  3. [3]
    A. Tonomura, S. Yano, N. Osakabe, T. Matsuda, H. Yamada, T. Kawasaki andJ. Endo:Proceedings of the II International Symposium on Foundations of Quantum Mechanics (Physical Society of Japan, Tokyo, 1986), p. 97.zbMATHGoogle Scholar
  4. [4]
    N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano andH. Yamada:Phys. Rev. A,34, 815 (1986).ADSCrossRefGoogle Scholar
  5. [5]
    S. Olariu andI. I. Popescu:Rev. Mod. Phys.,57, 339 (1985).ADSCrossRefGoogle Scholar
  6. [6]
    N. G. van Kampen:Phys. Lett. A,106, 5 (1984).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    T. Troudet:Phys. Lett. A,111, 274 (1985).MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. [8]
    E. Comay:J. Phys. A,20, 5729 (1987).ADSCrossRefGoogle Scholar
  9. [9]
    D. Home andS. Sengupta:Am. J. Phys.,51, 942 (1983).ADSCrossRefGoogle Scholar
  10. [10]
    S. M. Roy andV. Singh:Nuovo Cimento A,79, 391 (1984).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    D. H. Kove:J. Phys. A,18, 237 (1985).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    R. P. Feynman:Rev. Mod. Phys.,20, 367 (1948).MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R. P. Feynman andA. R. Hibbs:Quantum Mechanics and Path Integrals (McGraw-Hill, New York, N. Y., 1965).zbMATHGoogle Scholar
  14. [14]
    D. H. Kobe:Ann. Phys. (N.Y.),123, 381 (1974).ADSCrossRefGoogle Scholar
  15. [15]
    J. J. Sakurai:Modern Quantum Mechanics (Benjamin/Cummings, Menlo Park, Cal., 1985), chapt. 2.Google Scholar
  16. [16]
    L. S. Schulman:Techniques and Applications of Path Integration (Wiley-Interscience, New York, N.Y., 1981).zbMATHGoogle Scholar
  17. [17]
    A. Messiah:Quantum Mechanics, Vol. I (North-Holland, Amsterdam, 1962), sect. VI.3.zbMATHGoogle Scholar
  18. [18]
    W. Bayh:Z. Phys. A,169, 492 (1962).CrossRefGoogle Scholar
  19. [19]
    T. T. Wu andC. N. Yang:Phys. Rev. D,12, 3845 (1975).MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    C. N. Yang:Phys. Rev. Lett.,33, 445 (1974).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1992

Authors and Affiliations

  • R. A. Brown
    • 1
  • D. Home
    • 2
  1. 1.School of PhysicsMacquarie UniversitySydneyAustralia
  2. 2.Dipartimento di Fisica dell’UniversitàBariItalia

Personalised recommendations