Skip to main content
Log in

Effect of thermosolutal convection on directional solidification

  • Published:
Sadhana Aims and scope Submit manuscript

Absract

The impact of thermosolutal convection during directional solidification is explored via results of numerical investigations. Results from fully transient numerical simulations of directional solidification in a differentially heated cavity under terrestrial conditions and Bridgman cytstal growth in space are discussed. The pivowl role ofboth thermaland solutal convection in the solidifaction process is illustrated by examining these two cases. In particular, radical and longitudinal macrosegregation resulting from this thermosolutal convection is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adornato P M, Brown R A 1987 Convection and segregation in directional solidification of dilute and non-dilute binary alloys J Crystal Growth 80: 155–190

    Article  Google Scholar 

  • Dantzig J A 1989 Modelling liquid-solid phase changes with melt convention.Int J. Numer. Meth. Engng 28: 1769–1785

    Article  MathSciNet  Google Scholar 

  • Flemings M C Nereo G E 1967 Macrosegregation Part I.Trans Metal Soc. AIME 229: 1449–1461

    Google Scholar 

  • Garimella S V, Simpson J E 2000 Numerical investigations of alloy solodification in space.Proc. ISHMT/ASME Joint Heat Mass Transfer Conference, Pune (New Delhi: Tata-McGraw Hill)

    Google Scholar 

  • Hirasak G J, Hellums J D 1968 A general formulation of the boundary conditions on the vector potential in three dimensional hydrodynamics Q. Appl. Math. 16: 331–342

    Google Scholar 

  • Hyum M T, Kuo D C. Bergman T L, Ball KS 1995 Direct simulation of double diffussion in low Prandtl number liquidsNumer. Heat Transfer A27: 639–65O

    Google Scholar 

  • Liang M C. Lan C W 1996 Three-dimensional convection and solute segregation in vertical Bridgman crystal growthJ. Crystal Growth 167: 320–322

    Article  Google Scholar 

  • Oldenburg C M, Spera F J 1991 Numerical modeling of solidification and convection in a viscous. pure binary eutectic system.Int. J. Heat Transfer 34: 2107–2121

    Article  Google Scholar 

  • Raw W Y. Lee S L 1991 Application of weighting function scheme on convection-conduction phase change problemsInt. J, Heat Mass Transfer 34: 1503–1513

    Article  Google Scholar 

  • Roache P J 1976Computational fluid dynamics (Hermosa)

  • Simpson J E, Garimella S V 1998 An investigation of the solutal thermal and flow fields in unidirectional alloy solidificationInt J Heat Mass Transfer 41: 2485–2502

    Article  MATH  Google Scholar 

  • Simpson: J E, Garimella S V 2000 The influence of gravity Ievels on the horizontal bridgman crystal growth of an alloyInt. J. Heat Mass Transfer 11: 1905–1923

    Article  Google Scholar 

  • Simpson J E, Yao M. de Groh H C III. Garimella S V 1998 Numerical modeling of solidification in space wiih MEPHISTO-4(Part 2) NASA Tech. Mem. TM-1998-206630).

  • space with Garimella S V, de Groh H C III. Abbaschian R 1999 Numerical simulation of crystal growth of an alloy under microgravity conditions.Proc. Natl. Heat Trans. Cnnf., (ASME) NHTC99-204 pp 1–9.

  • Simpson J E., de Groh H C III, Garimella S V 1999b An experimental and computational study of directional solidification in transparent materials. InFluid flow phenomena in metals processing (eds) N EI-Kaddahet al (Warrendale. PA. TMS) pp 449–458

    Google Scholar 

  • Simpson J E., de Groh HC III, Garimella S V 1999c Directional solidification of pure succinonitrile and a succinonitrile-acetone alloy. NASA Tech Mem. TM-1999-209381

  • Simpson J E., Garimella S V, de Groh H C III, Abbaschian R 2001 Bridgman crystal growth of an alloy with thermosolutal convection under microgravity conditions.ASME J. Heat Transfer (in press)

  • Smith V G, Tiller W A, Rotter J W 1955 A mathematical analysis of solute redistribution during solidification.Can J.Phys, 33: 723–743

    Google Scholar 

  • Swaminathan C R. Voller V R 1997 Towards a general numerical scheme for solidification systems.Int. J. Heat Mass Transfer 30: 2859–2868

    Article  Google Scholar 

  • Voller V R, Brent A D, Prakash C 1989 The modelling of heat, mass and Solute transport in solidification systems,Int. J. Heat Mass Transfer 32: 1719–1731.

    Article  Google Scholar 

  • Wolff F, Viskanta R 1988 Solidification of a pure metal at a vertical wall in the presence of liquid superteal,Int. J. Heat Mass Transfer 31: 1735–1744.

    Article  Google Scholar 

  • Yao M, Raman R, de Groh H C III 1995 Numerical modelling of Bridgman growth in space with MEPHISTO. InComputational machanics ’95. Proc. Int. Conf. Computational Enginearing Science (Springer) vol. 1. pp.514–519; also NASA Tech. Mem #107015

  • Zeng X, Faghri A 1994 Temperature-transforming model for binary solid-liquid phase-change problems, Part I: Mathematical modeling and numericalmethodology.Numer Heat Transfer B25: 467- 480

    Google Scholar 

  • Zhang H. Prasad V, Moallemi M K. 1996 Numerical algorthmusing multizone adaptive grid generation for multiphase transport processes with moving and free boundaries,Numer. Heat Transfer, B29, pp. 399–421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh V. Garimella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garimella, S.V., Simpson, J.E. Effect of thermosolutal convection on directional solidification. Sadhana 26, 121–138 (2001). https://doi.org/10.1007/BF02728482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728482

Keywords

Navigation