Skip to main content
Log in

Modelling of transport phenomena and defects in crystal growth processes

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

A brief review of single crystal growth techniques and the associated problems is presented Emphasis is placed on models for various transport and defect phenorrem involved in the growth proces with the ultimate aim of intergrating them into a comprehensive mumerical model. The sources of dislocation nucleation in the growing erystal are discussed, and the propagation and multiplacation of these under the action of thermal stresses is discussed. A brief description of a high-level numerical technique based on multiple adaptive grid generation and finite volume diseretization is presented, followed by the result of a representative numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander H 1986 Dislocations in covalent crystals. InDislocations in solids (ed), F R N Nabarro (Amsterdam: North-Holland) vol. 7, pp 113–234

    Google Scholar 

  • Alexander H, Hansen P 1968 Dislocations in the diamond structure insolid state physics (eds) F Seitz, D Tumbull, H Ehrenretch (New York & London; Academic Press) vol 22, pp 28–158.

    Google Scholar 

  • Anselmo A, Prasad V, Koziol, J, Gupta K P 1993 Numerical and experimental study of a solid pellet feed continuous Czocjruisk growth process for silicon single crystals.J. Cryst. Growth 131: 247–264.

    Article  Google Scholar 

  • Atherton, L Derhy J J, Brown R A 1987 Negative heat exchange in Czochralski growth.J. Cryst. Growth 84: 57–78.

    Article  Google Scholar 

  • Bardsley W, Frank F C, Green G, Hurle D T J 1974 Meniscus in Czochralski growth.J. Cryst. Growth 23: 341–344.

    Article  Google Scholar 

  • Batchelor G K 1967An introduction to fluid mechanics (London: Cambridge University Press) ch. 1

    Google Scholar 

  • Brice J C, King G D 1966. Effect of arsenic pressure on dislocation densities in melt-growth galtium arsenide.Nature (London) 209: 1346

    Article  Google Scholar 

  • Brown R A 1988 Thery of transport processes in single crystal growth from the melt, AIchE J. 34: 881–911

    Article  Google Scholar 

  • Chaudari A R, Patel J R, Rubin L G 1962 Velocities and densities of dislocations in Czochralski GaAsJ. Cryst. Growth 61: 111

    Google Scholar 

  • Chen T C, Wu H C, Weng C 1997. The effect of interface shape on anisotropic thermal stress of bulk single crystals during Czochralski growth.J. Cryst. Growth 173: 367–379

    Article  Google Scholar 

  • Czochralski J 1917 Ein neaes Verfahren are Messung der Kustallisation Gesehwindigkelt der Metalle.Z. Phys. Chem. 92: 219–221

    Google Scholar 

  • Dash W C 1958 Dislocation free silicon crystals. In Growth and perfection of crystals (ed) R M Dorenus, B W Roberts, D Tumbull (New York: Wiley)

    Google Scholar 

  • Geroge A, Rabier J 1987 Dislocations and plasticity in semiconductors. 1. Dislocation-structures and dynamics.Rev. Phys. Appl. 22: 941–966

    Google Scholar 

  • Hurle D T J, Cockayne B 1994 Czochralski growth. InHandbook of crystal growth (ed) D T J Hurle (New York: North Holland) vol 2a pp 99–211

    Google Scholar 

  • Jones A D W 1983 An experimental model of the flow in Czochralski growth.J. Cryst. Growth 61: 235–244.

    Article  Google Scholar 

  • Jordan A S, Canuso R, Von Neidh A R 1980 A thermoelastic analysis of dislocation generation in pulled GaAs crystals.Bell Syst. Tech J. 59: 593–637

    Google Scholar 

  • Jordan A S, Von Neida A R, Caruso R 1986. The theoretical and experimental fundamentals of decreasing dislocations in melt group GaAs and InP.J. Cryst. Growth 79: 243–262.

    Article  Google Scholar 

  • Jordan A S, Monberg E M, Clemans J E 1993 Thermal-stress theroy of dislocation reduction in the vertical gradiant freeze (VGF) growth of GaAs and InP.J. Cryst. Growth 128: 444–450

    Article  Google Scholar 

  • Kobayashi N 1978 Computational simulation of melt flow during Cxochrulski groth.J. Cryst. Growth 43: 357–363.

    Article  Google Scholar 

  • Kobayashi S, Miyahara S, Fujiwara T, Kubo T, Fujiwara H 1991 Turbulent heat-transfer through the melt in silicon Czorchrnlski growth.J. Cryst. Growth 109: 149–154

    Article  Google Scholar 

  • Kopetseh H 1989 Numerical simulation of the Czochrolski bulk flow silicon on a domain confined by a moving crystal interface and curved melt-gas meniseus.PhysicaChem. Hydrodyn 11: 357–375.

    Google Scholar 

  • Lambropoulos J C, Wu C H 1996 Mechanies of shaped crystal growth from the melt.J. Mater. Res. 11: 2163–2176.

    Article  Google Scholar 

  • Langlois W. E. 1981 Convection in Czochrolski growth melt.PhysicaChem. Hydrodyn 2: 245–261

    Google Scholar 

  • Marouds D, Brown R A 1991 On the prediction of dislocation formation in Semiconductor crystal grown from the melt—Analysis of the Hansen model for plastic deformation dynamics.J. Cryst. Growth 108: 399–415.

    Article  Google Scholar 

  • Mryazaki N, Kuroda Y 1998 Dislocation density simulations for bulk Single crystal growth process.Mritth Mater. Koren 4: 883–890.

    Google Scholar 

  • Miyazaki N, Kurodu Y 1999 Finite element analysis of dislocation density during bull crystal growth effect of doping atoms in InP single crystal growth.J. Cryst. Growth 196: 62–66

    Article  Google Scholar 

  • Mlyazaki N, Okuyams S 1998 Development of finite element computer program for dislocation density of bulk semiconductor single crystals during Czochralsk growth.J. Cryst. Growth 183: 81–88

    Article  Google Scholar 

  • Miyazaki N, Hagihara S, Munakata I 1990 Elasttc-constant matrix required for thermalstress analysis of bulk single-crystal during czochralski growth.J. Cryst. Growth 106: 149–156

    Article  Google Scholar 

  • Mooshrugger J C 1995 Contimuum slip, viscoplasticity with the Haasen constitutive model Application in single-crystal inelasticity.Int. J. Plasticity 11: 799–826

    Article  Google Scholar 

  • Mooshrugger J C, Levy A 1995 Constitutive modeling for CaTa single-crystals.Metal Matex. Trans. A 26: 2687–2697

    Article  Google Scholar 

  • Nabamo F R N, Basinski Z S, Holt D B 1964 The plasticity of pure single crystals.Ach. Phys. 13: 193–323

    Google Scholar 

  • Nunes E M, Naraghi M H N, Zhuug H, Prasad V 1996 Combined relative convection modeling for muterihld processes: Application to crystal growth.Proc. 31st Nalt Heat Transfer Conference (New York: ASME) HTD-vol. 323. pp 27–37

    Google Scholar 

  • Parsey J M, Jr. Nanishi Y, Lagowski J, Gates H C 1982 Bridgmen-type apparatus for the study of growth-property relationships — Arsenic vapor pressure GaAs property relationship.J. Electrochem. Soc. 129: 388–393

    Article  Google Scholar 

  • Patel V C, Rodi Schcuerer G 1985 Turbulence models for near wall and low Reymoids number flows.AIAA J. 23: 1308–1339

    MathSciNet  Google Scholar 

  • Rabier J, George A 1987 Dislocations and plasticity in semiconductors 2. The relation between dislocations dynamics and plastic-deformationRev. Phys. Appl. 22: 1327–1351

    Google Scholar 

  • Schvezov C, Samarasekara I V, Weinberg F 1989 Tremperature and stress feild calculations in indium phosphide during LEC growth.J. Cryst. Growth 97: 146–151

    Article  Google Scholar 

  • Shinoyama S, Uemura C, Yamamoto A, Tohrio S 1980 Groth of dislocation free undosped InP crystals.Jpn. J. Appl. Phys. 19: 1,331–1,334

    Article  Google Scholar 

  • Siethoff H 1992 The plsticity of elemental and compund semiconductors.Semiconductors and Semimetals 37: 143–187

    Google Scholar 

  • Sumino K, Yonenagn I 1993 Dislocation dynamics and mechanical behavior of elemental and compound semiconductors.Phys. Stau. Sal. (a) 138: 573–581

    Article  Google Scholar 

  • Surek T, Chalmers B 1975 Direction of growth of a crystal in contact with its melt.J. Cryst. Growth 29: 1–11.

    Article  Google Scholar 

  • Taylor G I 1934 The mecharism of plastic deformations of crystals. Part 1 Theoretical.Proc. R. Soc. 145: 362–387.

    Article  Google Scholar 

  • Teal G. K, Linle J B 1950 Growth of germunium single crystals.Phys. Rev. 78: 647

    Google Scholar 

  • Thakur S, Weight J, Shyy W, Liu I, Ouyang M, Vu I 1996. Development of pressure-based composite multigrid methods for complex fluid flows.Prog. Aerosp Sci. 32: 313–375

    Article  Google Scholar 

  • Tsai C T 1991. On the finite-element modeling-of dynamics during semiconductor-crystal growth.J. Cryst. Growth 113: 499–507.

    Article  Google Scholar 

  • Tasi C T, Guβuoglu A N, Hertly C S 1993 A crystallographic methodology for modeling dislocation dynamics in GaAs crystals grown froms the melt.J. Appl Phys. 73: 1650–1656

    Article  Google Scholar 

  • Vosed J. 1994 Stress in the cooling crystal. InHandbook of crystal growth (ed.) D T J Hurle (New York: North-Holland vol. 2u. pp 823–874.

    Google Scholar 

  • Voekl J, Mueller G, Blum W. 1987 Analysis of generation and inovement of dislocations in InP by a study of deformation-behavior.J. Cryst, Growth 83: 383–390

    Article  Google Scholar 

  • Ynkhot V, Orszag S A 1986 Renormatization group analysis of turbulence. I. Basic theory.J. Sci. comput 1: 1–51

    Article  Google Scholar 

  • Zhang, H, Prasad V 1995 A matizone mlaptive process model for low and high pressure crystal growth.J. Cryst. Growth 155: 47–65

    Article  Google Scholar 

  • Zhang H, Mollemi M K 1995 A multizone adaptive grid generation technique for simulation of moving and free boundary value problems.Numer Heat Transfer B27: 255–276

    Google Scholar 

  • Zhang H, Prasad V, Bass D 1995 Transport phenomena in high pressure crystal growth system for III-V compunds.J. Cryst. Growth 169: 250–260

    Article  Google Scholar 

  • Zhang H, Prasad V, Moallemi M K 1996 A numerical algorithin using multizone grid generation for multiphase transport processes with moving and free boundaries.Numer Heat Transfer B29: 399–421

    Google Scholar 

  • Zhang T, Ladiende F, Zhang H, Prasad V 1990 A comparison of turbulence models for natural convection in enclosures applications to crystal growth process. ASME Proc. 31st NationalHeat Transfer Conf. (ASME) HTD-vol. 323, pp 17–26

  • Zhang H, Zheng L, Prasad V, Larson D J Jr 1998 Local and global simulations of Bridgman and Czochralski crystal growth.J. Heat Transfer 120: 865–873

    Google Scholar 

  • Zhang H, Zheng L, Prasad V, Larson D J Jr 1998b Diameter controlled Czochralski growth of sihcon crystal.J. Heat Transfer 120: 874–882

    Google Scholar 

  • Zhang T, Wang G X, Zhang H, Ludeinde F, Prasad V 1990 Turbulent transport of oxygen in the Czochralski growth of large silicon.J. Cryst. Growth 198: 141–146.

    Article  Google Scholar 

  • Zhao. J Y Bliss D E Dudley M. Huang X R Raghothar B. as a strategy for dislocation reduction in manetic liquid encapsulated czechrulski crystal growth of sulfur-doped Inp.J. Cryst. Growth (to he published)

  • Zou Y F, Zhung H, Prasad V 1996 Dynamies of melt-crystal interface and thermal stresses in Czechralski crystal growth processes.J. Cryst. Growth 166: 476–482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendurti, S., Zhang, H. & Prasad, V. Modelling of transport phenomena and defects in crystal growth processes. Sadhana 26, 71–101 (2001). https://doi.org/10.1007/BF02728480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728480

Keywords

Navigation