Skip to main content
Log in

Rapid solidification in thermal spray deposition: Microstructure and modelling

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Mechanical thermal and adhesive properties of thermal spray coating are primarily determined by the phase and microstructure of single splats, which ultimately depend on rapid solidification of each splat and on the interactions between the splats and between the splat and the substrate. Significant efforts are being made to develop a better understanding of the physical mechanisms underlying these phenomena. This paper reviews a series of work in the area of mathematical modeling of phase and microstructure formation during the rapid solidification of single splats and coatings. The model development has been complimented by special experiments. Conditions under which plantar interface solidification occurs, columnar celluar or dendritic growth takes place, or banded structure forms, have been identified. A microstructure map can therefore built using the model presented here. The process parameters that promote crystalline nucleation and grain structure formation can be isolated and the effect of interfacial heat transfer, splat substrate temperature difference, and substrate melting and resolidification can be examined using the model. The model prediction agree qualitatively well with the experimental data for alumina, yttria, partially-stabilized zirconia, and molybdenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aziz M J 1982 Model for solute redistribution during rapid solidification.J. Appl. Phys. 53: 1158–1168.

    Article  Google Scholar 

  • Baker J C, Cahn J W 1971 Thermodynamics of solidification. InSolidification (Metal Park, OH;Am. Soc. Metals pp 23–58.

    Google Scholar 

  • Bartlett A H, Maschio R D 1995 Failure mechanisms of a zirconia-8 with yttria thermal barrier coating,J. Am. Ceram. Soc. 78: 1018–1024

    Article  Google Scholar 

  • Battle U P 1992 Mathematical modeling of solute segregation in solidifying methods.Int. Mater. Rev. 37: 249–270

    Google Scholar 

  • Beckermann C, Wang C Y. 1995 Multiphase/-scale modeling of alloy solidification.Annu. Rev. Heat Transfer 6: 115–198

    Google Scholar 

  • Boettinger W J, Coriell S R 1986 Microstructure formation in rapidly solidified alloys. InScience and technology of the undercoated melt. (eds.) P. R Sahm, H Jones, C M Adam (Martinus Nijhoff) pp 81–109.

  • Carrard M, Gremand M, Zimmermann M, Kurz W 1992 About the banded structure in rapidly solidified dendritic and eutectic alloys.Acta. Metall. Mater. 40: 983–996.

    Article  Google Scholar 

  • Clyne T W 1982 Numerical modeling of directional solidification of metallic alloys.Metal Sci. 16: 441–450

    Article  Google Scholar 

  • Clyne T W 1984 Numerical treatment of rapid solidification.Metall. Trans. B15: 369–381

    Google Scholar 

  • Feuerbacher B 1989Phase formation in metastable solidification of metals.Mater. Sci. Rep. 4: 1–40

    Article  Google Scholar 

  • Flood S C, Hutt J D 1987 Columnar and equiaxed growth, I. A model of a columnar front with a temperature dependent velocity.J. Crystal Growth 82: 543–551

    Article  Google Scholar 

  • Gansert R V 1996 Plasma-spray processing of alumina-based free-forms using water-stabilized plasma. Ph D thesis, State University of New York at Stony Brook, Stony Brook

    Google Scholar 

  • Giovanola B, Kurz W 1990 Modeling of microsegregation under rapid solidification conditions,Metall. Trans. A21: 260–263.

    Google Scholar 

  • Goswami R, Wang G-X, Sampath S, Herman H 1999 Synthesis of zirconia-8wt.% yttria nanocomposites by thermal spray. 1999TMS Annual Meeting, San Diego, CA (Warrendale, PA: TMS)

    Google Scholar 

  • Granasy L, Ludwig A 1992 Impact of casting conditions of the dendritic solidification in single roller quencing methods (simulation). InMelt-spinning and strip casting: Research and implementation (ed.) E F Matthys (Warrendale PA: TMS), pp 53–68.

    Google Scholar 

  • Jacobson L A, McKittrick J 1994 Rapid solidification processing.Mater. Sci. Eng. R11: 355–408.

    Google Scholar 

  • Jiang X Y, Sampath S, Matejieck J 1999 Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings, Part II: Case study for molybdenum.Mater. Sci. Eng. A272: 189–198.

    Google Scholar 

  • Jiang X Y, Sampath S, Herman H 2000 Grain morphology of molybdenum splats plasma-sprayed on glass substrates.Mater. Sci. A (submitted).

  • Karma A, Sarkissian A 1993 Interface dynamics and banding in rapid solidification.Phys. Rev. 47: 513–533.

    Article  Google Scholar 

  • Kim S G, Shin S H, Suzuki T, Umede T 1994 Numerical analysis of the rapid solidification of gas- atomized Al-8 wt pct Fe droplets.Metall. Mater. Trans. A25: 2815–2826.

    Article  Google Scholar 

  • Kurz W, Fisher D J 1989Fundamentals of solidification. 3rd edn (Trans. Tech. Publ.)

  • Levi C G 1988 The evolution of microcrystalline structures in supercooled metal powders.Metall. Trans. A19: 699–708.

    Google Scholar 

  • Levi C G, Mehrabian R 1982 Heat flow during rapid solidification of undercooled metal droplets.Metall. Trans. A13: 221–234

    Google Scholar 

  • Lu S Z, Hunt J D, Gilgien P, Kurz W 1994 Cellular and dendritic growth in rapidly solidified Al-Fe and Al-Cu alloys.Acta. Metall. Mater. 42: 1653–1660

    Article  Google Scholar 

  • McPherson R. 1980 On the formation of thermally sprayed alumina coatings.J. Mater. Sci. 15: 3141–3149

    Article  Google Scholar 

  • Moreau C, Lamontagne M, Crelo P 1992 Influence of the coating thickness on the cooling rates of plasma-sprayed particles impinging on a substrate.Surf. Coating Tech. 53: 107–114

    Article  Google Scholar 

  • Mostaghinu J, Pasandideh Fard M, Azar R G, Chandra S 1999 Modeling of the formation of the thermal spray coatings. Presented at the Mater. Res. Soc. Fall Meeting, Boston MA

  • Rappar M 1989 Modelling of microstructure formation in solidification processes;Int. Mater. Rev. 34: 93–123

    Google Scholar 

  • Robert C, Denoirjean A, Vardelle A, Wang G-X, Sampath S 1998a Nucleation and phase selection in plasma-sprayed Al2O3: Modeling and experiments.Proc. 15th Int Thermal Spray Conference, Nice, France. pp 407–412

  • Robert C, Vardelle A, Wang G-X, Jiang X, Sampath S 1998b Microstructure development during plasma spraying of molybdenum, Part I: Splat solidification.Proc. 15th Int. Thermal Spray Conference, Nice, France. pp 729–734

  • Sampath S, Herman H 1996 Rapid solidification and microstructure development during plasma spraying.J. Thermal Spray Tech. 5: 445–456

    Article  Google Scholar 

  • Sampath S, Neiser R A, Herman H, Kirkland J P, Elam W T 1993 A structural investigation of a plasma sprayed Ni-Cr based alloy coating.J. Mater. Res. 8: 78–86

    Article  Google Scholar 

  • Sampath S, Jiang X Y, Matejicek J, Legger A C, Vardelle A 1999 Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings. Part I: Case study for partially stabilized zirconia.Mater. Sci. Eng. A272: 181–188

    Google Scholar 

  • Trapaga G, Szekely J 1991 Mathematical modeling of the isothermal impingement of liquid droplets in spraying processes.Metall. Trans. B 22: 901–914

    Article  Google Scholar 

  • Trivedi R, Kurz W 1986 Morphological stability of a planar interface under rapid solidification conditions.Acta Metall. 34: 1663–1670

    Article  Google Scholar 

  • Trivedi R., Kurz W 1994 Dendritic growth,Int. Mater. Rev. 39: 49–74

    Google Scholar 

  • Vardelle A, Robert C, Wang G-X, Sampath S 1997 Analysis of nucleation, phase selection and rapid solidification of an alumina splat. InThermal spray: A united forum for scientific and technological advances (ed.) CC Berndt (Materials Park, OH: ASM Int.) pp. 635–643

    Google Scholar 

  • Wang G-X, Matthys E F 1991 Modeling of heat transfer and solidification during splat cooling: Effect of splat thickness and splat/substrate thermal contact.Int. J. Rapid Solidification 6: 141–174

    Google Scholar 

  • Wang G-X, Matthys E F 1992 Numerical of phase change and heat transfer during rapid solidification processes: Use of control volume intergal with element subdivision.Int. J. Heat Mars Transfer 35: 141–153

    Article  Google Scholar 

  • Wang G-X, Matthys E F 1993 Modeling of rapid planar solidification of a binary alloy. InHeat and mass transfer in materials processing and manufacturing (New York: ASME):vol. HTD 261, pp 35–44

    Google Scholar 

  • Wang G-X, Matthys E F 1996a Modeling of surface melting and resolidification for pure metals and binary alloys: Effects of non-equilibrium kinetics.J. Heat Transfer. 118, 944–951

    Google Scholar 

  • Wang G-X, Matthys E F 1996b Experimental investigation of interfacial thermal resistance for molten metal solidification on a substrate.J. Heat Transfer. 118, 157–163

    Google Scholar 

  • Wang G-X, Matthys E F 1996c On the heat transfer at the interface between a solidifying metal and a solid substrate. InMelt-spinning, strip casting and slab casting (eds.) E F Matthys, W G Truckner (Warrendale, PA: TMS) pp 205–236

    Google Scholar 

  • Wang G-X, Prasad V, 2000 Rapid solidification: Fundamentals and modeling,Annu. Rev. Heat Transfer 11: 207–305

    Google Scholar 

  • Wang G-X, Prasad V, Sampath S, Herman H 1998 A mathematical model for microsegregation in rapidly solidified alloys. InModeling casting, welding advanced solidification processes — VIII, (eds.) B G Thomas C Beckermann (Warrendale, PA: TMS) pp 219–226

    Google Scholar 

  • Wang G-X, Prasad V, Sampath S 2000a An interated model for dendritic planar interface growth and morphology transition rapid solidification.Metall. Mater. Trans. A31: 735–746

    Article  Google Scholar 

  • Wang G-X, Goswami R, Sampath S, Prasad V 2000b Heat transfer and solidification analysis of splat formation in plasma-sprayed zirconia-yttrin thermal barner coatings.4th ISHMT-ASME Heat Transfer Conferrence (New Delhi Tata-McGraw-Hill) pp 1135–1140.

    Google Scholar 

  • Wang G-X, Hang X Y, Sampath S 2000c Grain structure development in plasma-sprayed coatings: Experiment and modeling. InSurface engineering in materials science I (eds) S Sealet al (Warrendale, PA; TMS) pp 197–209

    Google Scholar 

  • Wang S-P, Wang G-X, Matthys E F 1998 Melting and resolidification of a substrate in contact with a molten metal: Operational maps.Int. J. Heat Mass Transfer 41: 1177–1188

    Article  MATH  Google Scholar 

  • Wang S-P, Wang G-X, Matthys E F 1999 Deposition of a molten layer of high melting point meterial: Substrate melting and resolidification,Mater. Sci. Eng. A262: 25–32

    Google Scholar 

  • Zhang H 1999 Theoretical analysis of spreading and solidification of molten droplet during thermal spray deposition.Int. J. Heat Mass Transfer 42: 2499–2508

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, GX., Prasad, V. & Sampath, S. Rapid solidification in thermal spray deposition: Microstructure and modelling. Sadhana 26, 35–57 (2001). https://doi.org/10.1007/BF02728478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728478

Key words

Navigation